Metamath Proof Explorer


Theorem cnvsymOLD

Description: Obsolete proof of cnvsym as of 29-Dec-2024. (Contributed by NM, 28-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by SN, 23-Dec-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cnvsymOLD ( 𝑅𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )

Proof

Step Hyp Ref Expression
1 relcnv Rel 𝑅
2 ssrel3 ( Rel 𝑅 → ( 𝑅𝑅 ↔ ∀ 𝑦𝑥 ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) ) )
3 1 2 ax-mp ( 𝑅𝑅 ↔ ∀ 𝑦𝑥 ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) )
4 alcom ( ∀ 𝑦𝑥 ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥𝑦 ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) )
5 vex 𝑦 ∈ V
6 vex 𝑥 ∈ V
7 5 6 brcnv ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 )
8 7 imbi1i ( ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
9 8 2albii ( ∀ 𝑥𝑦 ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
10 3 4 9 3bitri ( 𝑅𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )