Step |
Hyp |
Ref |
Expression |
1 |
|
tsrps |
⊢ ( 𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel ) |
2 |
|
cnvps |
⊢ ( 𝑅 ∈ PosetRel → ◡ 𝑅 ∈ PosetRel ) |
3 |
1 2
|
syl |
⊢ ( 𝑅 ∈ TosetRel → ◡ 𝑅 ∈ PosetRel ) |
4 |
|
eqid |
⊢ dom 𝑅 = dom 𝑅 |
5 |
4
|
istsr |
⊢ ( 𝑅 ∈ TosetRel ↔ ( 𝑅 ∈ PosetRel ∧ ( dom 𝑅 × dom 𝑅 ) ⊆ ( 𝑅 ∪ ◡ 𝑅 ) ) ) |
6 |
5
|
simprbi |
⊢ ( 𝑅 ∈ TosetRel → ( dom 𝑅 × dom 𝑅 ) ⊆ ( 𝑅 ∪ ◡ 𝑅 ) ) |
7 |
4
|
psrn |
⊢ ( 𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅 ) |
8 |
1 7
|
syl |
⊢ ( 𝑅 ∈ TosetRel → dom 𝑅 = ran 𝑅 ) |
9 |
8
|
sqxpeqd |
⊢ ( 𝑅 ∈ TosetRel → ( dom 𝑅 × dom 𝑅 ) = ( ran 𝑅 × ran 𝑅 ) ) |
10 |
|
psrel |
⊢ ( 𝑅 ∈ PosetRel → Rel 𝑅 ) |
11 |
1 10
|
syl |
⊢ ( 𝑅 ∈ TosetRel → Rel 𝑅 ) |
12 |
|
dfrel2 |
⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) |
13 |
11 12
|
sylib |
⊢ ( 𝑅 ∈ TosetRel → ◡ ◡ 𝑅 = 𝑅 ) |
14 |
13
|
uneq2d |
⊢ ( 𝑅 ∈ TosetRel → ( ◡ 𝑅 ∪ ◡ ◡ 𝑅 ) = ( ◡ 𝑅 ∪ 𝑅 ) ) |
15 |
|
uncom |
⊢ ( ◡ 𝑅 ∪ 𝑅 ) = ( 𝑅 ∪ ◡ 𝑅 ) |
16 |
14 15
|
eqtr2di |
⊢ ( 𝑅 ∈ TosetRel → ( 𝑅 ∪ ◡ 𝑅 ) = ( ◡ 𝑅 ∪ ◡ ◡ 𝑅 ) ) |
17 |
6 9 16
|
3sstr3d |
⊢ ( 𝑅 ∈ TosetRel → ( ran 𝑅 × ran 𝑅 ) ⊆ ( ◡ 𝑅 ∪ ◡ ◡ 𝑅 ) ) |
18 |
|
df-rn |
⊢ ran 𝑅 = dom ◡ 𝑅 |
19 |
18
|
istsr |
⊢ ( ◡ 𝑅 ∈ TosetRel ↔ ( ◡ 𝑅 ∈ PosetRel ∧ ( ran 𝑅 × ran 𝑅 ) ⊆ ( ◡ 𝑅 ∪ ◡ ◡ 𝑅 ) ) ) |
20 |
3 17 19
|
sylanbrc |
⊢ ( 𝑅 ∈ TosetRel → ◡ 𝑅 ∈ TosetRel ) |