| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unopf1o | ⊢ ( 𝑇  ∈  UniOp  →  𝑇 :  ℋ –1-1-onto→  ℋ ) | 
						
							| 2 |  | f1ocnv | ⊢ ( 𝑇 :  ℋ –1-1-onto→  ℋ  →  ◡ 𝑇 :  ℋ –1-1-onto→  ℋ ) | 
						
							| 3 |  | f1ofo | ⊢ ( ◡ 𝑇 :  ℋ –1-1-onto→  ℋ  →  ◡ 𝑇 :  ℋ –onto→  ℋ ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝑇 :  ℋ –1-1-onto→  ℋ  →  ◡ 𝑇 :  ℋ –onto→  ℋ ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝑇  ∈  UniOp  →  ◡ 𝑇 :  ℋ –onto→  ℋ ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  𝑇  ∈  UniOp ) | 
						
							| 7 |  | fof | ⊢ ( ◡ 𝑇 :  ℋ –onto→  ℋ  →  ◡ 𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 8 | 5 7 | syl | ⊢ ( 𝑇  ∈  UniOp  →  ◡ 𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝑥  ∈   ℋ )  →  ( ◡ 𝑇 ‘ 𝑥 )  ∈   ℋ ) | 
						
							| 10 | 9 | adantrr | ⊢ ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ◡ 𝑇 ‘ 𝑥 )  ∈   ℋ ) | 
						
							| 11 | 8 | ffvelcdmda | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝑦  ∈   ℋ )  →  ( ◡ 𝑇 ‘ 𝑦 )  ∈   ℋ ) | 
						
							| 12 | 11 | adantrl | ⊢ ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ◡ 𝑇 ‘ 𝑦 )  ∈   ℋ ) | 
						
							| 13 |  | unop | ⊢ ( ( 𝑇  ∈  UniOp  ∧  ( ◡ 𝑇 ‘ 𝑥 )  ∈   ℋ  ∧  ( ◡ 𝑇 ‘ 𝑦 )  ∈   ℋ )  →  ( ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) )  ·ih  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) )  =  ( ( ◡ 𝑇 ‘ 𝑥 )  ·ih  ( ◡ 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 14 | 6 10 12 13 | syl3anc | ⊢ ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) )  ·ih  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) )  =  ( ( ◡ 𝑇 ‘ 𝑥 )  ·ih  ( ◡ 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 15 |  | f1ocnvfv2 | ⊢ ( ( 𝑇 :  ℋ –1-1-onto→  ℋ  ∧  𝑥  ∈   ℋ )  →  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 16 | 15 | adantrr | ⊢ ( ( 𝑇 :  ℋ –1-1-onto→  ℋ  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 17 |  | f1ocnvfv2 | ⊢ ( ( 𝑇 :  ℋ –1-1-onto→  ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) )  =  𝑦 ) | 
						
							| 18 | 17 | adantrl | ⊢ ( ( 𝑇 :  ℋ –1-1-onto→  ℋ  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) )  =  𝑦 ) | 
						
							| 19 | 16 18 | oveq12d | ⊢ ( ( 𝑇 :  ℋ –1-1-onto→  ℋ  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) )  ·ih  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) )  =  ( 𝑥  ·ih  𝑦 ) ) | 
						
							| 20 | 1 19 | sylan | ⊢ ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) )  ·ih  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) )  =  ( 𝑥  ·ih  𝑦 ) ) | 
						
							| 21 | 14 20 | eqtr3d | ⊢ ( ( 𝑇  ∈  UniOp  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( ◡ 𝑇 ‘ 𝑥 )  ·ih  ( ◡ 𝑇 ‘ 𝑦 ) )  =  ( 𝑥  ·ih  𝑦 ) ) | 
						
							| 22 | 21 | ralrimivva | ⊢ ( 𝑇  ∈  UniOp  →  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( ◡ 𝑇 ‘ 𝑥 )  ·ih  ( ◡ 𝑇 ‘ 𝑦 ) )  =  ( 𝑥  ·ih  𝑦 ) ) | 
						
							| 23 |  | elunop | ⊢ ( ◡ 𝑇  ∈  UniOp  ↔  ( ◡ 𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( ◡ 𝑇 ‘ 𝑥 )  ·ih  ( ◡ 𝑇 ‘ 𝑦 ) )  =  ( 𝑥  ·ih  𝑦 ) ) ) | 
						
							| 24 | 5 22 23 | sylanbrc | ⊢ ( 𝑇  ∈  UniOp  →  ◡ 𝑇  ∈  UniOp ) |