Metamath Proof Explorer


Theorem cnvxp

Description: The converse of a Cartesian product. Exercise 11 of Suppes p. 67. (Contributed by NM, 14-Aug-1999) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion cnvxp ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 )

Proof

Step Hyp Ref Expression
1 cnvopab { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦𝐴𝑥𝐵 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦𝐴𝑥𝐵 ) }
2 ancom ( ( 𝑦𝐴𝑥𝐵 ) ↔ ( 𝑥𝐵𝑦𝐴 ) )
3 2 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦𝐴𝑥𝐵 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐴 ) }
4 1 3 eqtri { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦𝐴𝑥𝐵 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐴 ) }
5 df-xp ( 𝐴 × 𝐵 ) = { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦𝐴𝑥𝐵 ) }
6 5 cnveqi ( 𝐴 × 𝐵 ) = { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦𝐴𝑥𝐵 ) }
7 df-xp ( 𝐵 × 𝐴 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐴 ) }
8 4 6 7 3eqtr4i ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 )