Metamath Proof Explorer


Theorem cnxmet

Description: The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Assertion cnxmet ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ )

Proof

Step Hyp Ref Expression
1 cnmet ( abs ∘ − ) ∈ ( Met ‘ ℂ )
2 metxmet ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) )
3 1 2 ax-mp ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ )