Metamath Proof Explorer


Theorem co02

Description: Composition with the empty set. Theorem 20 of Suppes p. 63. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion co02 ( 𝐴 ∘ ∅ ) = ∅

Proof

Step Hyp Ref Expression
1 relco Rel ( 𝐴 ∘ ∅ )
2 rel0 Rel ∅
3 br0 ¬ 𝑥𝑧
4 3 intnanr ¬ ( 𝑥𝑧𝑧 𝐴 𝑦 )
5 4 nex ¬ ∃ 𝑧 ( 𝑥𝑧𝑧 𝐴 𝑦 )
6 vex 𝑥 ∈ V
7 vex 𝑦 ∈ V
8 6 7 opelco ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 ∘ ∅ ) ↔ ∃ 𝑧 ( 𝑥𝑧𝑧 𝐴 𝑦 ) )
9 5 8 mtbir ¬ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 ∘ ∅ )
10 noel ¬ ⟨ 𝑥 , 𝑦 ⟩ ∈ ∅
11 9 10 2false ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 ∘ ∅ ) ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ∅ )
12 1 2 11 eqrelriiv ( 𝐴 ∘ ∅ ) = ∅