Description: Composition with the empty set. Theorem 20 of Suppes p. 63. (Contributed by NM, 24-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | co02 | ⊢ ( 𝐴 ∘ ∅ ) = ∅ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relco | ⊢ Rel ( 𝐴 ∘ ∅ ) | |
| 2 | rel0 | ⊢ Rel ∅ | |
| 3 | br0 | ⊢ ¬ 𝑥 ∅ 𝑧 | |
| 4 | 3 | intnanr | ⊢ ¬ ( 𝑥 ∅ 𝑧 ∧ 𝑧 𝐴 𝑦 ) | 
| 5 | 4 | nex | ⊢ ¬ ∃ 𝑧 ( 𝑥 ∅ 𝑧 ∧ 𝑧 𝐴 𝑦 ) | 
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | vex | ⊢ 𝑦 ∈ V | |
| 8 | 6 7 | opelco | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ ∅ ) ↔ ∃ 𝑧 ( 𝑥 ∅ 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) | 
| 9 | 5 8 | mtbir | ⊢ ¬ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ ∅ ) | 
| 10 | noel | ⊢ ¬ 〈 𝑥 , 𝑦 〉 ∈ ∅ | |
| 11 | 9 10 | 2false | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ ∅ ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ∅ ) | 
| 12 | 1 2 11 | eqrelriiv | ⊢ ( 𝐴 ∘ ∅ ) = ∅ |