Step |
Hyp |
Ref |
Expression |
1 |
|
fvco3 |
⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
2 |
1
|
3ad2antl2 |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
3 |
|
fvco3 |
⊢ ( ( 𝐾 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) ) |
4 |
3
|
3ad2antl3 |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) ) |
5 |
2 4
|
eqeq12d |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) ) ) |
6 |
|
simpl1 |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐵 –1-1→ 𝐶 ) |
7 |
|
ffvelrn |
⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) |
8 |
7
|
3ad2antl2 |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) |
9 |
|
ffvelrn |
⊢ ( ( 𝐾 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑥 ) ∈ 𝐵 ) |
10 |
9
|
3ad2antl3 |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑥 ) ∈ 𝐵 ) |
11 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ ( ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐾 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) ↔ ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
12 |
6 8 10 11
|
syl12anc |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝐾 ‘ 𝑥 ) ) ↔ ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
13 |
5 12
|
bitrd |
⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) ↔ ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
14 |
13
|
ralbidva |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
15 |
|
f1f |
⊢ ( 𝐹 : 𝐵 –1-1→ 𝐶 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
17 |
16
|
ffnd |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → 𝐹 Fn 𝐵 ) |
18 |
|
simp2 |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
19 |
|
fnfco |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐻 ) Fn 𝐴 ) |
20 |
17 18 19
|
syl2anc |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐻 ) Fn 𝐴 ) |
21 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → 𝐾 : 𝐴 ⟶ 𝐵 ) |
22 |
|
fnfco |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐾 ) Fn 𝐴 ) |
23 |
17 21 22
|
syl2anc |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐾 ) Fn 𝐴 ) |
24 |
|
eqfnfv |
⊢ ( ( ( 𝐹 ∘ 𝐻 ) Fn 𝐴 ∧ ( 𝐹 ∘ 𝐾 ) Fn 𝐴 ) → ( ( 𝐹 ∘ 𝐻 ) = ( 𝐹 ∘ 𝐾 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) ) ) |
25 |
20 23 24
|
syl2anc |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝐻 ) = ( 𝐹 ∘ 𝐾 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ∘ 𝐾 ) ‘ 𝑥 ) ) ) |
26 |
18
|
ffnd |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → 𝐻 Fn 𝐴 ) |
27 |
21
|
ffnd |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → 𝐾 Fn 𝐴 ) |
28 |
|
eqfnfv |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝐾 Fn 𝐴 ) → ( 𝐻 = 𝐾 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
29 |
26 27 28
|
syl2anc |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( 𝐻 = 𝐾 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
30 |
14 25 29
|
3bitr4d |
⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝐾 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝐻 ) = ( 𝐹 ∘ 𝐾 ) ↔ 𝐻 = 𝐾 ) ) |