Step |
Hyp |
Ref |
Expression |
1 |
|
fof |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
3 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
4 |
2 3
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
5 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
6 |
2 5
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
7 |
4 6
|
eqeq12d |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑦 ) ↔ ( 𝐻 ‘ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
8 |
7
|
ralbidva |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝐻 ‘ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
9 |
|
fveq2 |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑥 → ( 𝐻 ‘ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐻 ‘ 𝑥 ) ) |
10 |
|
fveq2 |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑥 → ( 𝐾 ‘ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐾 ‘ 𝑥 ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑥 → ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
12 |
11
|
cbvfo |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∀ 𝑦 ∈ 𝐴 ( 𝐻 ‘ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝐻 ‘ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
14 |
8 13
|
bitrd |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
15 |
|
simp2 |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) → 𝐻 Fn 𝐵 ) |
16 |
|
fnfco |
⊢ ( ( 𝐻 Fn 𝐵 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐻 ∘ 𝐹 ) Fn 𝐴 ) |
17 |
15 2 16
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) → ( 𝐻 ∘ 𝐹 ) Fn 𝐴 ) |
18 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) → 𝐾 Fn 𝐵 ) |
19 |
|
fnfco |
⊢ ( ( 𝐾 Fn 𝐵 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐾 ∘ 𝐹 ) Fn 𝐴 ) |
20 |
18 2 19
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) → ( 𝐾 ∘ 𝐹 ) Fn 𝐴 ) |
21 |
|
eqfnfv |
⊢ ( ( ( 𝐻 ∘ 𝐹 ) Fn 𝐴 ∧ ( 𝐾 ∘ 𝐹 ) Fn 𝐴 ) → ( ( 𝐻 ∘ 𝐹 ) = ( 𝐾 ∘ 𝐹 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑦 ) ) ) |
22 |
17 20 21
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) → ( ( 𝐻 ∘ 𝐹 ) = ( 𝐾 ∘ 𝐹 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑦 ) ) ) |
23 |
|
eqfnfv |
⊢ ( ( 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) → ( 𝐻 = 𝐾 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
24 |
15 18 23
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) → ( 𝐻 = 𝐾 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐻 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑥 ) ) ) |
25 |
14 22 24
|
3bitr4d |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐻 Fn 𝐵 ∧ 𝐾 Fn 𝐵 ) → ( ( 𝐻 ∘ 𝐹 ) = ( 𝐾 ∘ 𝐹 ) ↔ 𝐻 = 𝐾 ) ) |