| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coefv0.1 | ⊢ 𝐴  =  ( coeff ‘ 𝐹 ) | 
						
							| 2 |  | coeadd.2 | ⊢ 𝐵  =  ( coeff ‘ 𝐺 ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝐹  =  𝐺  →  ( coeff ‘ 𝐹 )  =  ( coeff ‘ 𝐺 ) ) | 
						
							| 4 | 3 1 2 | 3eqtr4g | ⊢ ( 𝐹  =  𝐺  →  𝐴  =  𝐵 ) | 
						
							| 5 |  | simp3 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  →  𝐴  =  𝐵 ) | 
						
							| 6 | 5 | cnveqd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  →  ◡ 𝐴  =  ◡ 𝐵 ) | 
						
							| 7 | 6 | imaeq1d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  →  ( ◡ 𝐴  “  ( ℂ  ∖  { 0 } ) )  =  ( ◡ 𝐵  “  ( ℂ  ∖  { 0 } ) ) ) | 
						
							| 8 | 7 | supeq1d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  →  sup ( ( ◡ 𝐴  “  ( ℂ  ∖  { 0 } ) ) ,  ℕ0 ,   <  )  =  sup ( ( ◡ 𝐵  “  ( ℂ  ∖  { 0 } ) ) ,  ℕ0 ,   <  ) ) | 
						
							| 9 | 1 | dgrval | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ 𝐹 )  =  sup ( ( ◡ 𝐴  “  ( ℂ  ∖  { 0 } ) ) ,  ℕ0 ,   <  ) ) | 
						
							| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  →  ( deg ‘ 𝐹 )  =  sup ( ( ◡ 𝐴  “  ( ℂ  ∖  { 0 } ) ) ,  ℕ0 ,   <  ) ) | 
						
							| 11 | 2 | dgrval | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ 𝐺 )  =  sup ( ( ◡ 𝐵  “  ( ℂ  ∖  { 0 } ) ) ,  ℕ0 ,   <  ) ) | 
						
							| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  →  ( deg ‘ 𝐺 )  =  sup ( ( ◡ 𝐵  “  ( ℂ  ∖  { 0 } ) ) ,  ℕ0 ,   <  ) ) | 
						
							| 13 | 8 10 12 | 3eqtr4d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  →  ( deg ‘ 𝐹 )  =  ( deg ‘ 𝐺 ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  →  ( 0 ... ( deg ‘ 𝐹 ) )  =  ( 0 ... ( deg ‘ 𝐺 ) ) ) | 
						
							| 15 |  | simpl3 | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  𝐴  =  𝐵 ) | 
						
							| 16 | 15 | fveq1d | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  ∧  𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 18 | 14 17 | sumeq12dv | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  →  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 19 | 18 | mpteq2dv | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( deg ‘ 𝐹 )  =  ( deg ‘ 𝐹 ) | 
						
							| 21 | 1 20 | coeid | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( deg ‘ 𝐺 )  =  ( deg ‘ 𝐺 ) | 
						
							| 24 | 2 23 | coeid | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 25 | 24 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  →  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( deg ‘ 𝐺 ) ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 26 | 19 22 25 | 3eqtr4d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  =  𝐵 )  →  𝐹  =  𝐺 ) | 
						
							| 27 | 26 | 3expia | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐴  =  𝐵  →  𝐹  =  𝐺 ) ) | 
						
							| 28 | 4 27 | impbid2 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐹  =  𝐺  ↔  𝐴  =  𝐵 ) ) |