Step |
Hyp |
Ref |
Expression |
1 |
|
coefv0.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
2 |
|
coeadd.2 |
⊢ 𝐵 = ( coeff ‘ 𝐺 ) |
3 |
|
fveq2 |
⊢ ( 𝐹 = 𝐺 → ( coeff ‘ 𝐹 ) = ( coeff ‘ 𝐺 ) ) |
4 |
3 1 2
|
3eqtr4g |
⊢ ( 𝐹 = 𝐺 → 𝐴 = 𝐵 ) |
5 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
6 |
5
|
cnveqd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) → ◡ 𝐴 = ◡ 𝐵 ) |
7 |
6
|
imaeq1d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) → ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) = ( ◡ 𝐵 “ ( ℂ ∖ { 0 } ) ) ) |
8 |
7
|
supeq1d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) → sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) = sup ( ( ◡ 𝐵 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |
9 |
1
|
dgrval |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) = sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) → ( deg ‘ 𝐹 ) = sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |
11 |
2
|
dgrval |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐺 ) = sup ( ( ◡ 𝐵 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |
12 |
11
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) → ( deg ‘ 𝐺 ) = sup ( ( ◡ 𝐵 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |
13 |
8 10 12
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) → ( deg ‘ 𝐹 ) = ( deg ‘ 𝐺 ) ) |
14 |
13
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) → ( 0 ... ( deg ‘ 𝐹 ) ) = ( 0 ... ( deg ‘ 𝐺 ) ) ) |
15 |
|
simpl3 |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → 𝐴 = 𝐵 ) |
16 |
15
|
fveq1d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝐴 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
17 |
16
|
oveq1d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
18 |
14 17
|
sumeq12dv |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) → Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
19 |
18
|
mpteq2dv |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
20 |
|
eqid |
⊢ ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) |
21 |
1 20
|
coeid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
23 |
|
eqid |
⊢ ( deg ‘ 𝐺 ) = ( deg ‘ 𝐺 ) |
24 |
2 23
|
coeid |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
25 |
24
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) → 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐺 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
26 |
19 22 25
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐴 = 𝐵 ) → 𝐹 = 𝐺 ) |
27 |
26
|
3expia |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝐴 = 𝐵 → 𝐹 = 𝐺 ) ) |
28 |
4 27
|
impbid2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( 𝐹 = 𝐺 ↔ 𝐴 = 𝐵 ) ) |