| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1add.y | ⊢ 𝑌  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | coe1add.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | coe1add.p | ⊢  ✚   =  ( +g ‘ 𝑌 ) | 
						
							| 4 |  | coe1add.q | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 6 | 1 2 | ply1bas | ⊢ 𝐵  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 7 | 1 5 3 | ply1plusg | ⊢  ✚   =  ( +g ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  𝐹  ∈  𝐵 ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  𝐺  ∈  𝐵 ) | 
						
							| 10 | 5 6 4 7 8 9 | mpladd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 𝐹  ✚  𝐺 )  =  ( 𝐹  ∘f   +  𝐺 ) ) | 
						
							| 11 | 10 | coeq1d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( ( 𝐹  ✚  𝐺 )  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) )  =  ( ( 𝐹  ∘f   +  𝐺 )  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 13 | 1 2 12 | ply1basf | ⊢ ( 𝐹  ∈  𝐵  →  𝐹 : ( ℕ0  ↑m  1o ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 14 | 13 | ffnd | ⊢ ( 𝐹  ∈  𝐵  →  𝐹  Fn  ( ℕ0  ↑m  1o ) ) | 
						
							| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  𝐹  Fn  ( ℕ0  ↑m  1o ) ) | 
						
							| 16 | 1 2 12 | ply1basf | ⊢ ( 𝐺  ∈  𝐵  →  𝐺 : ( ℕ0  ↑m  1o ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 17 | 16 | ffnd | ⊢ ( 𝐺  ∈  𝐵  →  𝐺  Fn  ( ℕ0  ↑m  1o ) ) | 
						
							| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  𝐺  Fn  ( ℕ0  ↑m  1o ) ) | 
						
							| 19 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 20 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 21 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 22 |  | eqid | ⊢ ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) )  =  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) | 
						
							| 23 | 19 20 21 22 | mapsnf1o3 | ⊢ ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) : ℕ0 –1-1-onto→ ( ℕ0  ↑m  1o ) | 
						
							| 24 |  | f1of | ⊢ ( ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) : ℕ0 –1-1-onto→ ( ℕ0  ↑m  1o )  →  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) : ℕ0 ⟶ ( ℕ0  ↑m  1o ) ) | 
						
							| 25 | 23 24 | mp1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) : ℕ0 ⟶ ( ℕ0  ↑m  1o ) ) | 
						
							| 26 |  | ovexd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( ℕ0  ↑m  1o )  ∈  V ) | 
						
							| 27 | 20 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ℕ0  ∈  V ) | 
						
							| 28 |  | inidm | ⊢ ( ( ℕ0  ↑m  1o )  ∩  ( ℕ0  ↑m  1o ) )  =  ( ℕ0  ↑m  1o ) | 
						
							| 29 | 15 18 25 26 26 27 28 | ofco | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( ( 𝐹  ∘f   +  𝐺 )  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) )  =  ( ( 𝐹  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) )  ∘f   +  ( 𝐺  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) ) ) ) | 
						
							| 30 | 11 29 | eqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( ( 𝐹  ✚  𝐺 )  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) )  =  ( ( 𝐹  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) )  ∘f   +  ( 𝐺  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) ) ) ) | 
						
							| 31 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑌  ∈  Ring ) | 
						
							| 32 | 2 3 | ringacl | ⊢ ( ( 𝑌  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 𝐹  ✚  𝐺 )  ∈  𝐵 ) | 
						
							| 33 | 31 32 | syl3an1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 𝐹  ✚  𝐺 )  ∈  𝐵 ) | 
						
							| 34 |  | eqid | ⊢ ( coe1 ‘ ( 𝐹  ✚  𝐺 ) )  =  ( coe1 ‘ ( 𝐹  ✚  𝐺 ) ) | 
						
							| 35 | 34 2 1 22 | coe1fval2 | ⊢ ( ( 𝐹  ✚  𝐺 )  ∈  𝐵  →  ( coe1 ‘ ( 𝐹  ✚  𝐺 ) )  =  ( ( 𝐹  ✚  𝐺 )  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) ) ) | 
						
							| 36 | 33 35 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( coe1 ‘ ( 𝐹  ✚  𝐺 ) )  =  ( ( 𝐹  ✚  𝐺 )  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) ) ) | 
						
							| 37 |  | eqid | ⊢ ( coe1 ‘ 𝐹 )  =  ( coe1 ‘ 𝐹 ) | 
						
							| 38 | 37 2 1 22 | coe1fval2 | ⊢ ( 𝐹  ∈  𝐵  →  ( coe1 ‘ 𝐹 )  =  ( 𝐹  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) ) ) | 
						
							| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( coe1 ‘ 𝐹 )  =  ( 𝐹  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) ) ) | 
						
							| 40 |  | eqid | ⊢ ( coe1 ‘ 𝐺 )  =  ( coe1 ‘ 𝐺 ) | 
						
							| 41 | 40 2 1 22 | coe1fval2 | ⊢ ( 𝐺  ∈  𝐵  →  ( coe1 ‘ 𝐺 )  =  ( 𝐺  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) ) ) | 
						
							| 42 | 41 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( coe1 ‘ 𝐺 )  =  ( 𝐺  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) ) ) | 
						
							| 43 | 39 42 | oveq12d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( ( coe1 ‘ 𝐹 )  ∘f   +  ( coe1 ‘ 𝐺 ) )  =  ( ( 𝐹  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) )  ∘f   +  ( 𝐺  ∘  ( 𝑎  ∈  ℕ0  ↦  ( 1o  ×  { 𝑎 } ) ) ) ) ) | 
						
							| 44 | 30 36 43 | 3eqtr4d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( coe1 ‘ ( 𝐹  ✚  𝐺 ) )  =  ( ( coe1 ‘ 𝐹 )  ∘f   +  ( coe1 ‘ 𝐺 ) ) ) |