Step |
Hyp |
Ref |
Expression |
1 |
|
coe1add.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
2 |
|
coe1add.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
3 |
|
coe1add.p |
⊢ ✚ = ( +g ‘ 𝑌 ) |
4 |
|
coe1add.q |
⊢ + = ( +g ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
6 |
1 2
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
7 |
1 5 3
|
ply1plusg |
⊢ ✚ = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
8 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 ∈ 𝐵 ) |
9 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
10 |
5 6 4 7 8 9
|
mpladd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ✚ 𝐺 ) = ( 𝐹 ∘f + 𝐺 ) ) |
11 |
10
|
coeq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 ✚ 𝐺 ) ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) = ( ( 𝐹 ∘f + 𝐺 ) ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
13 |
1 2 12
|
ply1basf |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ ( Base ‘ 𝑅 ) ) |
14 |
13
|
ffnd |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 Fn ( ℕ0 ↑m 1o ) ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 Fn ( ℕ0 ↑m 1o ) ) |
16 |
1 2 12
|
ply1basf |
⊢ ( 𝐺 ∈ 𝐵 → 𝐺 : ( ℕ0 ↑m 1o ) ⟶ ( Base ‘ 𝑅 ) ) |
17 |
16
|
ffnd |
⊢ ( 𝐺 ∈ 𝐵 → 𝐺 Fn ( ℕ0 ↑m 1o ) ) |
18 |
17
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 Fn ( ℕ0 ↑m 1o ) ) |
19 |
|
df1o2 |
⊢ 1o = { ∅ } |
20 |
|
nn0ex |
⊢ ℕ0 ∈ V |
21 |
|
0ex |
⊢ ∅ ∈ V |
22 |
|
eqid |
⊢ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) = ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) |
23 |
19 20 21 22
|
mapsnf1o3 |
⊢ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) : ℕ0 –1-1-onto→ ( ℕ0 ↑m 1o ) |
24 |
|
f1of |
⊢ ( ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) : ℕ0 –1-1-onto→ ( ℕ0 ↑m 1o ) → ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) : ℕ0 ⟶ ( ℕ0 ↑m 1o ) ) |
25 |
23 24
|
mp1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) : ℕ0 ⟶ ( ℕ0 ↑m 1o ) ) |
26 |
|
ovexd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ℕ0 ↑m 1o ) ∈ V ) |
27 |
20
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ℕ0 ∈ V ) |
28 |
|
inidm |
⊢ ( ( ℕ0 ↑m 1o ) ∩ ( ℕ0 ↑m 1o ) ) = ( ℕ0 ↑m 1o ) |
29 |
15 18 25 26 26 27 28
|
ofco |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 ∘f + 𝐺 ) ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) = ( ( 𝐹 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ∘f + ( 𝐺 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) ) |
30 |
11 29
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 ✚ 𝐺 ) ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) = ( ( 𝐹 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ∘f + ( 𝐺 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) ) |
31 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ Ring ) |
32 |
2 3
|
ringacl |
⊢ ( ( 𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ✚ 𝐺 ) ∈ 𝐵 ) |
33 |
31 32
|
syl3an1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ✚ 𝐺 ) ∈ 𝐵 ) |
34 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐹 ✚ 𝐺 ) ) = ( coe1 ‘ ( 𝐹 ✚ 𝐺 ) ) |
35 |
34 2 1 22
|
coe1fval2 |
⊢ ( ( 𝐹 ✚ 𝐺 ) ∈ 𝐵 → ( coe1 ‘ ( 𝐹 ✚ 𝐺 ) ) = ( ( 𝐹 ✚ 𝐺 ) ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
36 |
33 35
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 ✚ 𝐺 ) ) = ( ( 𝐹 ✚ 𝐺 ) ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
37 |
|
eqid |
⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ 𝐹 ) |
38 |
37 2 1 22
|
coe1fval2 |
⊢ ( 𝐹 ∈ 𝐵 → ( coe1 ‘ 𝐹 ) = ( 𝐹 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
39 |
38
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ 𝐹 ) = ( 𝐹 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
40 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
41 |
40 2 1 22
|
coe1fval2 |
⊢ ( 𝐺 ∈ 𝐵 → ( coe1 ‘ 𝐺 ) = ( 𝐺 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
42 |
41
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ 𝐺 ) = ( 𝐺 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
43 |
39 42
|
oveq12d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( coe1 ‘ 𝐹 ) ∘f + ( coe1 ‘ 𝐺 ) ) = ( ( 𝐹 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ∘f + ( 𝐺 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) ) |
44 |
30 36 43
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 ✚ 𝐺 ) ) = ( ( coe1 ‘ 𝐹 ) ∘f + ( coe1 ‘ 𝐺 ) ) ) |