Metamath Proof Explorer


Theorem coe1addfv

Description: A particular coefficient of an addition. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses coe1add.y 𝑌 = ( Poly1𝑅 )
coe1add.b 𝐵 = ( Base ‘ 𝑌 )
coe1add.p = ( +g𝑌 )
coe1add.q + = ( +g𝑅 )
Assertion coe1addfv ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1𝐹 ) ‘ 𝑋 ) + ( ( coe1𝐺 ) ‘ 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 coe1add.y 𝑌 = ( Poly1𝑅 )
2 coe1add.b 𝐵 = ( Base ‘ 𝑌 )
3 coe1add.p = ( +g𝑌 )
4 coe1add.q + = ( +g𝑅 )
5 1 2 3 4 coe1add ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( coe1 ‘ ( 𝐹 𝐺 ) ) = ( ( coe1𝐹 ) ∘f + ( coe1𝐺 ) ) )
6 5 adantr ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐹 𝐺 ) ) = ( ( coe1𝐹 ) ∘f + ( coe1𝐺 ) ) )
7 6 fveq1d ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1𝐹 ) ∘f + ( coe1𝐺 ) ) ‘ 𝑋 ) )
8 eqid ( coe1𝐹 ) = ( coe1𝐹 )
9 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
10 8 2 1 9 coe1f ( 𝐹𝐵 → ( coe1𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) )
11 10 ffnd ( 𝐹𝐵 → ( coe1𝐹 ) Fn ℕ0 )
12 11 3ad2ant2 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( coe1𝐹 ) Fn ℕ0 )
13 12 adantr ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( coe1𝐹 ) Fn ℕ0 )
14 eqid ( coe1𝐺 ) = ( coe1𝐺 )
15 14 2 1 9 coe1f ( 𝐺𝐵 → ( coe1𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) )
16 15 ffnd ( 𝐺𝐵 → ( coe1𝐺 ) Fn ℕ0 )
17 16 3ad2ant3 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( coe1𝐺 ) Fn ℕ0 )
18 17 adantr ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( coe1𝐺 ) Fn ℕ0 )
19 nn0ex 0 ∈ V
20 19 a1i ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ℕ0 ∈ V )
21 simpr ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝑋 ∈ ℕ0 )
22 fnfvof ( ( ( ( coe1𝐹 ) Fn ℕ0 ∧ ( coe1𝐺 ) Fn ℕ0 ) ∧ ( ℕ0 ∈ V ∧ 𝑋 ∈ ℕ0 ) ) → ( ( ( coe1𝐹 ) ∘f + ( coe1𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1𝐹 ) ‘ 𝑋 ) + ( ( coe1𝐺 ) ‘ 𝑋 ) ) )
23 13 18 20 21 22 syl22anc ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( ( coe1𝐹 ) ∘f + ( coe1𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1𝐹 ) ‘ 𝑋 ) + ( ( coe1𝐺 ) ‘ 𝑋 ) ) )
24 7 23 eqtrd ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1𝐹 ) ‘ 𝑋 ) + ( ( coe1𝐺 ) ‘ 𝑋 ) ) )