Metamath Proof Explorer


Theorem coe1ae0

Description: The coefficient vector of a univariate polynomial is 0 almost everywhere. (Contributed by AV, 19-Oct-2019)

Ref Expression
Hypotheses coe1ae0.a 𝐴 = ( coe1𝐹 )
coe1ae0.b 𝐵 = ( Base ‘ 𝑃 )
coe1ae0.p 𝑃 = ( Poly1𝑅 )
coe1ae0.z 0 = ( 0g𝑅 )
Assertion coe1ae0 ( 𝐹𝐵 → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴𝑛 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 coe1ae0.a 𝐴 = ( coe1𝐹 )
2 coe1ae0.b 𝐵 = ( Base ‘ 𝑃 )
3 coe1ae0.p 𝑃 = ( Poly1𝑅 )
4 coe1ae0.z 0 = ( 0g𝑅 )
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 1 2 3 4 5 coe1fsupp ( 𝐹𝐵𝐴 ∈ { 𝑎 ∈ ( ( Base ‘ 𝑅 ) ↑m0 ) ∣ 𝑎 finSupp 0 } )
7 breq1 ( 𝑎 = 𝐴 → ( 𝑎 finSupp 0𝐴 finSupp 0 ) )
8 7 elrab ( 𝐴 ∈ { 𝑎 ∈ ( ( Base ‘ 𝑅 ) ↑m0 ) ∣ 𝑎 finSupp 0 } ↔ ( 𝐴 ∈ ( ( Base ‘ 𝑅 ) ↑m0 ) ∧ 𝐴 finSupp 0 ) )
9 4 fvexi 0 ∈ V
10 9 a1i ( 𝐹𝐵0 ∈ V )
11 fsuppmapnn0ub ( ( 𝐴 ∈ ( ( Base ‘ 𝑅 ) ↑m0 ) ∧ 0 ∈ V ) → ( 𝐴 finSupp 0 → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴𝑛 ) = 0 ) ) )
12 10 11 sylan2 ( ( 𝐴 ∈ ( ( Base ‘ 𝑅 ) ↑m0 ) ∧ 𝐹𝐵 ) → ( 𝐴 finSupp 0 → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴𝑛 ) = 0 ) ) )
13 12 impancom ( ( 𝐴 ∈ ( ( Base ‘ 𝑅 ) ↑m0 ) ∧ 𝐴 finSupp 0 ) → ( 𝐹𝐵 → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴𝑛 ) = 0 ) ) )
14 8 13 sylbi ( 𝐴 ∈ { 𝑎 ∈ ( ( Base ‘ 𝑅 ) ↑m0 ) ∣ 𝑎 finSupp 0 } → ( 𝐹𝐵 → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴𝑛 ) = 0 ) ) )
15 6 14 mpcom ( 𝐹𝐵 → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴𝑛 ) = 0 ) )