Description: Functionality of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | coe1fval.a | ⊢ 𝐴 = ( coe1 ‘ 𝐹 ) | |
coe1f.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
coe1f.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
coe1f.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
Assertion | coe1f | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 : ℕ0 ⟶ 𝐾 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1fval.a | ⊢ 𝐴 = ( coe1 ‘ 𝐹 ) | |
2 | coe1f.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
3 | coe1f.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
4 | coe1f.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
5 | 3 2 | ply1bascl | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
6 | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) | |
7 | eqid | ⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) | |
8 | 1 6 7 4 | coe1f2 | ⊢ ( 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) → 𝐴 : ℕ0 ⟶ 𝐾 ) |
9 | 5 8 | syl | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 : ℕ0 ⟶ 𝐾 ) |