Step |
Hyp |
Ref |
Expression |
1 |
|
coe1fval.a |
⊢ 𝐴 = ( coe1 ‘ 𝐹 ) |
2 |
|
coe1f2.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
coe1f2.p |
⊢ 𝑃 = ( PwSer1 ‘ 𝑅 ) |
4 |
|
coe1f2.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
3 2 4
|
psr1basf |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ 𝐾 ) |
6 |
|
df1o2 |
⊢ 1o = { ∅ } |
7 |
|
nn0ex |
⊢ ℕ0 ∈ V |
8 |
|
0ex |
⊢ ∅ ∈ V |
9 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) |
10 |
6 7 8 9
|
mapsnf1o3 |
⊢ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) : ℕ0 –1-1-onto→ ( ℕ0 ↑m 1o ) |
11 |
|
f1of |
⊢ ( ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) : ℕ0 –1-1-onto→ ( ℕ0 ↑m 1o ) → ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) : ℕ0 ⟶ ( ℕ0 ↑m 1o ) ) |
12 |
10 11
|
ax-mp |
⊢ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) : ℕ0 ⟶ ( ℕ0 ↑m 1o ) |
13 |
|
fco |
⊢ ( ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ 𝐾 ∧ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) : ℕ0 ⟶ ( ℕ0 ↑m 1o ) ) → ( 𝐹 ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) : ℕ0 ⟶ 𝐾 ) |
14 |
5 12 13
|
sylancl |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) : ℕ0 ⟶ 𝐾 ) |
15 |
1 2 3 9
|
coe1fval3 |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 = ( 𝐹 ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) ) |
16 |
15
|
feq1d |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐴 : ℕ0 ⟶ 𝐾 ↔ ( 𝐹 ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) : ℕ0 ⟶ 𝐾 ) ) |
17 |
14 16
|
mpbird |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 : ℕ0 ⟶ 𝐾 ) |