| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1sfi.a | ⊢ 𝐴  =  ( coe1 ‘ 𝐹 ) | 
						
							| 2 |  | coe1sfi.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | coe1sfi.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | coe1sfi.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | coe1fvalcl.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | breq1 | ⊢ ( 𝑔  =  𝐴  →  ( 𝑔  finSupp   0   ↔  𝐴  finSupp   0  ) ) | 
						
							| 7 | 1 2 3 5 | coe1f | ⊢ ( 𝐹  ∈  𝐵  →  𝐴 : ℕ0 ⟶ 𝐾 ) | 
						
							| 8 | 5 | fvexi | ⊢ 𝐾  ∈  V | 
						
							| 9 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 10 | 8 9 | pm3.2i | ⊢ ( 𝐾  ∈  V  ∧  ℕ0  ∈  V ) | 
						
							| 11 |  | elmapg | ⊢ ( ( 𝐾  ∈  V  ∧  ℕ0  ∈  V )  →  ( 𝐴  ∈  ( 𝐾  ↑m  ℕ0 )  ↔  𝐴 : ℕ0 ⟶ 𝐾 ) ) | 
						
							| 12 | 10 11 | mp1i | ⊢ ( 𝐹  ∈  𝐵  →  ( 𝐴  ∈  ( 𝐾  ↑m  ℕ0 )  ↔  𝐴 : ℕ0 ⟶ 𝐾 ) ) | 
						
							| 13 | 7 12 | mpbird | ⊢ ( 𝐹  ∈  𝐵  →  𝐴  ∈  ( 𝐾  ↑m  ℕ0 ) ) | 
						
							| 14 | 1 2 3 4 | coe1sfi | ⊢ ( 𝐹  ∈  𝐵  →  𝐴  finSupp   0  ) | 
						
							| 15 | 6 13 14 | elrabd | ⊢ ( 𝐹  ∈  𝐵  →  𝐴  ∈  { 𝑔  ∈  ( 𝐾  ↑m  ℕ0 )  ∣  𝑔  finSupp   0  } ) |