| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1fval.a | ⊢ 𝐴  =  ( coe1 ‘ 𝐹 ) | 
						
							| 2 |  | elex | ⊢ ( 𝐹  ∈  𝑉  →  𝐹  ∈  V ) | 
						
							| 3 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ ( 1o  ×  { 𝑛 } ) )  =  ( 𝐹 ‘ ( 1o  ×  { 𝑛 } ) ) ) | 
						
							| 4 | 3 | mpteq2dv | ⊢ ( 𝑓  =  𝐹  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝑓 ‘ ( 1o  ×  { 𝑛 } ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐹 ‘ ( 1o  ×  { 𝑛 } ) ) ) ) | 
						
							| 5 |  | df-coe1 | ⊢ coe1  =  ( 𝑓  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( 𝑓 ‘ ( 1o  ×  { 𝑛 } ) ) ) ) | 
						
							| 6 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 7 | 6 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝐹 ‘ ( 1o  ×  { 𝑛 } ) ) )  ∈  V | 
						
							| 8 | 4 5 7 | fvmpt | ⊢ ( 𝐹  ∈  V  →  ( coe1 ‘ 𝐹 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐹 ‘ ( 1o  ×  { 𝑛 } ) ) ) ) | 
						
							| 9 | 1 8 | eqtrid | ⊢ ( 𝐹  ∈  V  →  𝐴  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐹 ‘ ( 1o  ×  { 𝑛 } ) ) ) ) | 
						
							| 10 | 2 9 | syl | ⊢ ( 𝐹  ∈  𝑉  →  𝐴  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐹 ‘ ( 1o  ×  { 𝑛 } ) ) ) ) |