Step |
Hyp |
Ref |
Expression |
1 |
|
coe1fval.a |
⊢ 𝐴 = ( coe1 ‘ 𝐹 ) |
2 |
|
elex |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) |
3 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 1o × { 𝑛 } ) ) = ( 𝐹 ‘ ( 1o × { 𝑛 } ) ) ) |
4 |
3
|
mpteq2dv |
⊢ ( 𝑓 = 𝐹 → ( 𝑛 ∈ ℕ0 ↦ ( 𝑓 ‘ ( 1o × { 𝑛 } ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑛 } ) ) ) ) |
5 |
|
df-coe1 |
⊢ coe1 = ( 𝑓 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( 𝑓 ‘ ( 1o × { 𝑛 } ) ) ) ) |
6 |
|
nn0ex |
⊢ ℕ0 ∈ V |
7 |
6
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑛 } ) ) ) ∈ V |
8 |
4 5 7
|
fvmpt |
⊢ ( 𝐹 ∈ V → ( coe1 ‘ 𝐹 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑛 } ) ) ) ) |
9 |
1 8
|
eqtrid |
⊢ ( 𝐹 ∈ V → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑛 } ) ) ) ) |
10 |
2 9
|
syl |
⊢ ( 𝐹 ∈ 𝑉 → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑛 } ) ) ) ) |