Step |
Hyp |
Ref |
Expression |
1 |
|
coe1fzgsumd.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
coe1fzgsumd.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
coe1fzgsumd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
coe1fzgsumd.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
5 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑀 |
7 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑀 |
8 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝑀 = ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
9 |
6 7 8
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) = ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
10 |
9
|
oveq2i |
⊢ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) = ( 𝑃 Σg ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
12 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
14 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → 𝑃 ∈ CMnd ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑃 ∈ CMnd ) |
18 |
|
simpll1 |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑚 ∈ Fin ) |
19 |
|
rspcsbela |
⊢ ( ( 𝑦 ∈ 𝑚 ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) |
20 |
19
|
expcom |
⊢ ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( 𝑦 ∈ 𝑚 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ( 𝑦 ∈ 𝑚 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) ) |
22 |
21
|
adantr |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑦 ∈ 𝑚 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) ) |
23 |
22
|
imp |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) |
24 |
|
vex |
⊢ 𝑎 ∈ V |
25 |
24
|
a1i |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑎 ∈ V ) |
26 |
|
simpll2 |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ¬ 𝑎 ∈ 𝑚 ) |
27 |
|
vsnid |
⊢ 𝑎 ∈ { 𝑎 } |
28 |
|
rspcsbela |
⊢ ( ( 𝑎 ∈ { 𝑎 } ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) |
29 |
27 28
|
mpan |
⊢ ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) |
30 |
29
|
adantl |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) |
31 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑎 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 = ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) |
32 |
2 11 17 18 23 25 26 30 31
|
gsumunsn |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) = ( ( 𝑃 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) |
33 |
10 32
|
syl5eq |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) = ( ( 𝑃 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) |
34 |
6 7 8
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) = ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
35 |
34
|
eqcomi |
⊢ ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) = ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) |
36 |
35
|
oveq2i |
⊢ ( 𝑃 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) = ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) |
37 |
36
|
oveq1i |
⊢ ( ( 𝑃 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) = ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) |
38 |
33 37
|
eqtrdi |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) = ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) |
39 |
38
|
fveq2d |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) = ( coe1 ‘ ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) ) |
40 |
39
|
fveq1d |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝐾 ) ) |
41 |
3
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → 𝑅 ∈ Ring ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
43 |
|
simplr |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) |
44 |
2 17 18 43
|
gsummptcl |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ∈ 𝐵 ) |
45 |
4
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → 𝐾 ∈ ℕ0 ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝐾 ∈ ℕ0 ) |
47 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
48 |
1 2 11 47
|
coe1addfv |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ∈ 𝐵 ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝐾 ) = ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
49 |
42 44 30 46 48
|
syl31anc |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝐾 ) = ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
50 |
40 49
|
eqtrd |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
51 |
|
oveq1 |
⊢ ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
52 |
50 51
|
sylan9eq |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
53 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) |
54 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) |
55 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) |
56 |
53 54 55
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) |
57 |
56
|
oveq2i |
⊢ ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) |
58 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
59 |
|
ringcmn |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) |
60 |
3 59
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
61 |
60
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → 𝑅 ∈ CMnd ) |
62 |
61
|
ad2antrr |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑅 ∈ CMnd ) |
63 |
|
csbfv12 |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ( ⦋ 𝑦 / 𝑥 ⦌ ( coe1 ‘ 𝑀 ) ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐾 ) |
64 |
|
csbfv2g |
⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ ( coe1 ‘ 𝑀 ) = ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) |
65 |
64
|
elv |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( coe1 ‘ 𝑀 ) = ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
66 |
|
csbconstg |
⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ 𝐾 = 𝐾 ) |
67 |
66
|
elv |
⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝐾 = 𝐾 |
68 |
65 67
|
fveq12i |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ ( coe1 ‘ 𝑀 ) ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐾 ) = ( ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) |
69 |
63 68
|
eqtri |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ( ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) |
70 |
|
eqid |
⊢ ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) = ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
71 |
70 2 1 58
|
coe1f |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 → ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
72 |
23 71
|
syl |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
73 |
45
|
adantr |
⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → 𝐾 ∈ ℕ0 ) |
74 |
73
|
ad2antrr |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → 𝐾 ∈ ℕ0 ) |
75 |
72 74
|
ffvelrnd |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → ( ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ∈ ( Base ‘ 𝑅 ) ) |
76 |
69 75
|
eqeltrid |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ∈ ( Base ‘ 𝑅 ) ) |
77 |
|
eqid |
⊢ ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) = ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) |
78 |
77 2 1 58
|
coe1f |
⊢ ( ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 → ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
79 |
30 78
|
syl |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
80 |
79 46
|
ffvelrnd |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ∈ ( Base ‘ 𝑅 ) ) |
81 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
82 |
|
nfcv |
⊢ Ⅎ 𝑥 coe1 |
83 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝑀 |
84 |
82 83
|
nffv |
⊢ Ⅎ 𝑥 ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) |
85 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐾 |
86 |
84 85
|
nffv |
⊢ Ⅎ 𝑥 ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) |
87 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝑀 = ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) |
88 |
87
|
fveq2d |
⊢ ( 𝑥 = 𝑎 → ( coe1 ‘ 𝑀 ) = ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) |
89 |
88
|
fveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) |
90 |
81 86 89
|
csbhypf |
⊢ ( 𝑦 = 𝑎 → ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) |
91 |
58 47 62 18 76 25 26 80 90
|
gsumunsn |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( ( 𝑅 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
92 |
57 91
|
syl5eq |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( ( 𝑅 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
93 |
53 54 55
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) |
94 |
93
|
eqcomi |
⊢ ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) |
95 |
94
|
oveq2i |
⊢ ( 𝑅 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) |
96 |
95
|
oveq1i |
⊢ ( ( 𝑅 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) |
97 |
92 96
|
eqtr2di |
⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
98 |
97
|
adantr |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
99 |
52 98
|
eqtrd |
⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
100 |
99
|
exp31 |
⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
101 |
100
|
com23 |
⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) → ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
102 |
101
|
ex |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) → ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) ) |
103 |
102
|
a2d |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) ) |
104 |
103
|
imp4b |
⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) |
105 |
5 104
|
syl5bi |
⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) |
106 |
105
|
ex |
⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |