| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1mul.s | ⊢ 𝑌  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | coe1mul.t | ⊢  ∙   =  ( .r ‘ 𝑌 ) | 
						
							| 3 |  | coe1mul.u | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | coe1mul.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 5 |  | id | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Ring ) | 
						
							| 6 | 1 4 | ply1bascl | ⊢ ( 𝐹  ∈  𝐵  →  𝐹  ∈  ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) | 
						
							| 7 | 1 4 | ply1bascl | ⊢ ( 𝐺  ∈  𝐵  →  𝐺  ∈  ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) | 
						
							| 8 |  | eqid | ⊢ ( PwSer1 ‘ 𝑅 )  =  ( PwSer1 ‘ 𝑅 ) | 
						
							| 9 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 10 |  | eqid | ⊢ ( 1o  mPwSer  𝑅 )  =  ( 1o  mPwSer  𝑅 ) | 
						
							| 11 | 1 9 2 | ply1mulr | ⊢  ∙   =  ( .r ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 12 | 9 10 11 | mplmulr | ⊢  ∙   =  ( .r ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 13 |  | eqid | ⊢ ( .r ‘ ( PwSer1 ‘ 𝑅 ) )  =  ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) | 
						
							| 14 | 8 10 13 | psr1mulr | ⊢ ( .r ‘ ( PwSer1 ‘ 𝑅 ) )  =  ( .r ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 15 | 12 14 | eqtr4i | ⊢  ∙   =  ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ 𝑅 ) )  =  ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) | 
						
							| 17 | 8 15 3 16 | coe1mul2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  ( Base ‘ ( PwSer1 ‘ 𝑅 ) )  ∧  𝐺  ∈  ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) )  →  ( coe1 ‘ ( 𝐹  ∙  𝐺 ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  Σg  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) ) ) ) ) | 
						
							| 18 | 5 6 7 17 | syl3an | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( coe1 ‘ ( 𝐹  ∙  𝐺 ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  Σg  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) ) ) ) ) |