Step |
Hyp |
Ref |
Expression |
1 |
|
coe1mul.s |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
2 |
|
coe1mul.t |
⊢ ∙ = ( .r ‘ 𝑌 ) |
3 |
|
coe1mul.u |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
coe1mul.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
5 |
|
id |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) |
6 |
1 4
|
ply1bascl |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
7 |
1 4
|
ply1bascl |
⊢ ( 𝐺 ∈ 𝐵 → 𝐺 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
8 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
10 |
|
eqid |
⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) |
11 |
1 9 2
|
ply1mulr |
⊢ ∙ = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
12 |
9 10 11
|
mplmulr |
⊢ ∙ = ( .r ‘ ( 1o mPwSer 𝑅 ) ) |
13 |
|
eqid |
⊢ ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) = ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) |
14 |
8 10 13
|
psr1mulr |
⊢ ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) = ( .r ‘ ( 1o mPwSer 𝑅 ) ) |
15 |
12 14
|
eqtr4i |
⊢ ∙ = ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) |
17 |
8 15 3 16
|
coe1mul2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ∧ 𝐺 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) → ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) ) ) |
18 |
5 6 7 17
|
syl3an |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) ) ) |