| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1mul2.s | ⊢ 𝑆  =  ( PwSer1 ‘ 𝑅 ) | 
						
							| 2 |  | coe1mul2.t | ⊢  ∙   =  ( .r ‘ 𝑆 ) | 
						
							| 3 |  | coe1mul2.u | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | coe1mul2.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 5 |  | fconst6g | ⊢ ( 𝑘  ∈  ℕ0  →  ( 1o  ×  { 𝑘 } ) : 1o ⟶ ℕ0 ) | 
						
							| 6 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 7 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 8 | 7 | elexi | ⊢ 1o  ∈  V | 
						
							| 9 | 6 8 | elmap | ⊢ ( ( 1o  ×  { 𝑘 } )  ∈  ( ℕ0  ↑m  1o )  ↔  ( 1o  ×  { 𝑘 } ) : 1o ⟶ ℕ0 ) | 
						
							| 10 | 5 9 | sylibr | ⊢ ( 𝑘  ∈  ℕ0  →  ( 1o  ×  { 𝑘 } )  ∈  ( ℕ0  ↑m  1o ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 1o  ×  { 𝑘 } )  ∈  ( ℕ0  ↑m  1o ) ) | 
						
							| 12 |  | eqidd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 1o  ×  { 𝑘 } ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 1o  ×  { 𝑘 } ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( 1o  mPwSer  𝑅 )  =  ( 1o  mPwSer  𝑅 ) | 
						
							| 14 | 1 4 13 | psr1bas2 | ⊢ 𝐵  =  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 15 | 1 13 2 | psr1mulr | ⊢  ∙   =  ( .r ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 16 |  | psr1baslem | ⊢ ( ℕ0  ↑m  1o )  =  { 𝑎  ∈  ( ℕ0  ↑m  1o )  ∣  ( ◡ 𝑎  “  ℕ )  ∈  Fin } | 
						
							| 17 |  | simp2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  𝐹  ∈  𝐵 ) | 
						
							| 18 |  | simp3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  𝐺  ∈  𝐵 ) | 
						
							| 19 | 13 14 3 15 16 17 18 | psrmulfval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 𝐹  ∙  𝐺 )  =  ( 𝑏  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑅  Σg  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  𝑏 }  ↦  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( 𝑏  ∘f   −  𝑐 ) ) ) ) ) ) ) | 
						
							| 20 |  | breq2 | ⊢ ( 𝑏  =  ( 1o  ×  { 𝑘 } )  →  ( 𝑑  ∘r   ≤  𝑏  ↔  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) ) ) | 
						
							| 21 | 20 | rabbidv | ⊢ ( 𝑏  =  ( 1o  ×  { 𝑘 } )  →  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  𝑏 }  =  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } ) | 
						
							| 22 |  | fvoveq1 | ⊢ ( 𝑏  =  ( 1o  ×  { 𝑘 } )  →  ( 𝐺 ‘ ( 𝑏  ∘f   −  𝑐 ) )  =  ( 𝐺 ‘ ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 ) ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑏  =  ( 1o  ×  { 𝑘 } )  →  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( 𝑏  ∘f   −  𝑐 ) ) )  =  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 ) ) ) ) | 
						
							| 24 | 21 23 | mpteq12dv | ⊢ ( 𝑏  =  ( 1o  ×  { 𝑘 } )  →  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  𝑏 }  ↦  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( 𝑏  ∘f   −  𝑐 ) ) ) )  =  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 ) ) ) ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( 𝑏  =  ( 1o  ×  { 𝑘 } )  →  ( 𝑅  Σg  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  𝑏 }  ↦  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( 𝑏  ∘f   −  𝑐 ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 ) ) ) ) ) ) | 
						
							| 26 | 11 12 19 25 | fmptco | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( ( 𝐹  ∙  𝐺 )  ∘  ( 𝑘  ∈  ℕ0  ↦  ( 1o  ×  { 𝑘 } ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  Σg  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 ) ) ) ) ) ) ) | 
						
							| 27 | 1 | psr1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑆  ∈  Ring ) | 
						
							| 28 | 4 2 | ringcl | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 𝐹  ∙  𝐺 )  ∈  𝐵 ) | 
						
							| 29 | 27 28 | syl3an1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 𝐹  ∙  𝐺 )  ∈  𝐵 ) | 
						
							| 30 |  | eqid | ⊢ ( coe1 ‘ ( 𝐹  ∙  𝐺 ) )  =  ( coe1 ‘ ( 𝐹  ∙  𝐺 ) ) | 
						
							| 31 |  | eqid | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( 1o  ×  { 𝑘 } ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 1o  ×  { 𝑘 } ) ) | 
						
							| 32 | 30 4 1 31 | coe1fval3 | ⊢ ( ( 𝐹  ∙  𝐺 )  ∈  𝐵  →  ( coe1 ‘ ( 𝐹  ∙  𝐺 ) )  =  ( ( 𝐹  ∙  𝐺 )  ∘  ( 𝑘  ∈  ℕ0  ↦  ( 1o  ×  { 𝑘 } ) ) ) ) | 
						
							| 33 | 29 32 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( coe1 ‘ ( 𝐹  ∙  𝐺 ) )  =  ( ( 𝐹  ∙  𝐺 )  ∘  ( 𝑘  ∈  ℕ0  ↦  ( 1o  ×  { 𝑘 } ) ) ) ) | 
						
							| 34 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 35 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 36 |  | simpl1 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 37 |  | ringcmn | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  CMnd ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  CMnd ) | 
						
							| 39 |  | fzfi | ⊢ ( 0 ... 𝑘 )  ∈  Fin | 
						
							| 40 | 39 | a1i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 0 ... 𝑘 )  ∈  Fin ) | 
						
							| 41 |  | simpll1 | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑥  ∈  ( 0 ... 𝑘 ) )  →  𝑅  ∈  Ring ) | 
						
							| 42 |  | simpll2 | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑥  ∈  ( 0 ... 𝑘 ) )  →  𝐹  ∈  𝐵 ) | 
						
							| 43 |  | eqid | ⊢ ( coe1 ‘ 𝐹 )  =  ( coe1 ‘ 𝐹 ) | 
						
							| 44 | 43 4 1 34 | coe1f2 | ⊢ ( 𝐹  ∈  𝐵  →  ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 45 | 42 44 | syl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑥  ∈  ( 0 ... 𝑘 ) )  →  ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 46 |  | elfznn0 | ⊢ ( 𝑥  ∈  ( 0 ... 𝑘 )  →  𝑥  ∈  ℕ0 ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑥  ∈  ( 0 ... 𝑘 ) )  →  𝑥  ∈  ℕ0 ) | 
						
							| 48 | 45 47 | ffvelcdmd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑥  ∈  ( 0 ... 𝑘 ) )  →  ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 49 |  | simpll3 | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑥  ∈  ( 0 ... 𝑘 ) )  →  𝐺  ∈  𝐵 ) | 
						
							| 50 |  | eqid | ⊢ ( coe1 ‘ 𝐺 )  =  ( coe1 ‘ 𝐺 ) | 
						
							| 51 | 50 4 1 34 | coe1f2 | ⊢ ( 𝐺  ∈  𝐵  →  ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 52 | 49 51 | syl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑥  ∈  ( 0 ... 𝑘 ) )  →  ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 53 |  | fznn0sub | ⊢ ( 𝑥  ∈  ( 0 ... 𝑘 )  →  ( 𝑘  −  𝑥 )  ∈  ℕ0 ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑥  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑘  −  𝑥 )  ∈  ℕ0 ) | 
						
							| 55 | 52 54 | ffvelcdmd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑥  ∈  ( 0 ... 𝑘 ) )  →  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 56 | 34 3 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ∈  ( Base ‘ 𝑅 )  ∧  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 57 | 41 48 55 56 | syl3anc | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑥  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 58 | 57 | fmpttd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) ) : ( 0 ... 𝑘 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 59 | 39 | elexi | ⊢ ( 0 ... 𝑘 )  ∈  V | 
						
							| 60 | 59 | mptex | ⊢ ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  ∈  V | 
						
							| 61 |  | funmpt | ⊢ Fun  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) ) | 
						
							| 62 |  | fvex | ⊢ ( 0g ‘ 𝑅 )  ∈  V | 
						
							| 63 | 60 61 62 | 3pm3.2i | ⊢ ( ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  ∈  V  ∧  Fun  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  ∧  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 64 |  | suppssdm | ⊢ ( ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  dom  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) ) | 
						
							| 65 |  | eqid | ⊢ ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  =  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) ) | 
						
							| 66 | 65 | dmmptss | ⊢ dom  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  ⊆  ( 0 ... 𝑘 ) | 
						
							| 67 | 64 66 | sstri | ⊢ ( ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  ( 0 ... 𝑘 ) | 
						
							| 68 | 39 67 | pm3.2i | ⊢ ( ( 0 ... 𝑘 )  ∈  Fin  ∧  ( ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  ( 0 ... 𝑘 ) ) | 
						
							| 69 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  ∈  V  ∧  Fun  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  ∧  ( 0g ‘ 𝑅 )  ∈  V )  ∧  ( ( 0 ... 𝑘 )  ∈  Fin  ∧  ( ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  ( 0 ... 𝑘 ) ) )  →  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 70 | 63 68 69 | mp2an | ⊢ ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  finSupp  ( 0g ‘ 𝑅 ) | 
						
							| 71 | 70 | a1i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 72 |  | eqid | ⊢ { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  =  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } | 
						
							| 73 | 72 | coe1mul2lem2 | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( 𝑐 ‘ ∅ ) ) : { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } –1-1-onto→ ( 0 ... 𝑘 ) ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( 𝑐 ‘ ∅ ) ) : { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } –1-1-onto→ ( 0 ... 𝑘 ) ) | 
						
							| 75 | 34 35 38 40 58 71 74 | gsumf1o | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑅  Σg  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) ) )  =  ( 𝑅  Σg  ( ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  ∘  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( 𝑐 ‘ ∅ ) ) ) ) ) | 
						
							| 76 |  | breq1 | ⊢ ( 𝑑  =  𝑐  →  ( 𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } )  ↔  𝑐  ∘r   ≤  ( 1o  ×  { 𝑘 } ) ) ) | 
						
							| 77 | 76 | elrab | ⊢ ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↔  ( 𝑐  ∈  ( ℕ0  ↑m  1o )  ∧  𝑐  ∘r   ≤  ( 1o  ×  { 𝑘 } ) ) ) | 
						
							| 78 | 77 | simprbi | ⊢ ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  →  𝑐  ∘r   ≤  ( 1o  ×  { 𝑘 } ) ) | 
						
							| 79 | 78 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  𝑐  ∘r   ≤  ( 1o  ×  { 𝑘 } ) ) | 
						
							| 80 |  | simplr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  𝑘  ∈  ℕ0 ) | 
						
							| 81 |  | elrabi | ⊢ ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  →  𝑐  ∈  ( ℕ0  ↑m  1o ) ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  𝑐  ∈  ( ℕ0  ↑m  1o ) ) | 
						
							| 83 |  | coe1mul2lem1 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑐  ∈  ( ℕ0  ↑m  1o ) )  →  ( 𝑐  ∘r   ≤  ( 1o  ×  { 𝑘 } )  ↔  ( 𝑐 ‘ ∅ )  ∈  ( 0 ... 𝑘 ) ) ) | 
						
							| 84 | 80 82 83 | syl2anc | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  ( 𝑐  ∘r   ≤  ( 1o  ×  { 𝑘 } )  ↔  ( 𝑐 ‘ ∅ )  ∈  ( 0 ... 𝑘 ) ) ) | 
						
							| 85 | 79 84 | mpbid | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  ( 𝑐 ‘ ∅ )  ∈  ( 0 ... 𝑘 ) ) | 
						
							| 86 |  | eqidd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( 𝑐 ‘ ∅ ) )  =  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( 𝑐 ‘ ∅ ) ) ) | 
						
							| 87 |  | eqidd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  =  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) ) ) | 
						
							| 88 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑐 ‘ ∅ )  →  ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  =  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) ) | 
						
							| 89 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑐 ‘ ∅ )  →  ( 𝑘  −  𝑥 )  =  ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) ) | 
						
							| 90 | 89 | fveq2d | ⊢ ( 𝑥  =  ( 𝑐 ‘ ∅ )  →  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) )  =  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) ) ) | 
						
							| 91 | 88 90 | oveq12d | ⊢ ( 𝑥  =  ( 𝑐 ‘ ∅ )  →  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) )  =  ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) ) ) ) | 
						
							| 92 | 85 86 87 91 | fmptco | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  ∘  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( 𝑐 ‘ ∅ ) ) )  =  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) ) ) ) ) | 
						
							| 93 |  | simpll2 | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  𝐹  ∈  𝐵 ) | 
						
							| 94 | 43 | fvcoe1 | ⊢ ( ( 𝐹  ∈  𝐵  ∧  𝑐  ∈  ( ℕ0  ↑m  1o ) )  →  ( 𝐹 ‘ 𝑐 )  =  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) ) | 
						
							| 95 | 93 82 94 | syl2anc | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  ( 𝐹 ‘ 𝑐 )  =  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) ) | 
						
							| 96 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 97 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 98 | 96 6 97 | mapsnconst | ⊢ ( 𝑐  ∈  ( ℕ0  ↑m  1o )  →  𝑐  =  ( 1o  ×  { ( 𝑐 ‘ ∅ ) } ) ) | 
						
							| 99 | 82 98 | syl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  𝑐  =  ( 1o  ×  { ( 𝑐 ‘ ∅ ) } ) ) | 
						
							| 100 | 99 | oveq2d | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 )  =  ( ( 1o  ×  { 𝑘 } )  ∘f   −  ( 1o  ×  { ( 𝑐 ‘ ∅ ) } ) ) ) | 
						
							| 101 | 7 | a1i | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  1o  ∈  On ) | 
						
							| 102 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 103 | 102 | a1i | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  𝑘  ∈  V ) | 
						
							| 104 |  | fvexd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  ( 𝑐 ‘ ∅ )  ∈  V ) | 
						
							| 105 | 101 103 104 | ofc12 | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  ( ( 1o  ×  { 𝑘 } )  ∘f   −  ( 1o  ×  { ( 𝑐 ‘ ∅ ) } ) )  =  ( 1o  ×  { ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) } ) ) | 
						
							| 106 | 100 105 | eqtrd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 )  =  ( 1o  ×  { ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) } ) ) | 
						
							| 107 | 106 | fveq2d | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  ( 𝐺 ‘ ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 ) )  =  ( 𝐺 ‘ ( 1o  ×  { ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) } ) ) ) | 
						
							| 108 |  | simpll3 | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  𝐺  ∈  𝐵 ) | 
						
							| 109 |  | fznn0sub | ⊢ ( ( 𝑐 ‘ ∅ )  ∈  ( 0 ... 𝑘 )  →  ( 𝑘  −  ( 𝑐 ‘ ∅ ) )  ∈  ℕ0 ) | 
						
							| 110 | 85 109 | syl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  ( 𝑘  −  ( 𝑐 ‘ ∅ ) )  ∈  ℕ0 ) | 
						
							| 111 | 50 | coe1fv | ⊢ ( ( 𝐺  ∈  𝐵  ∧  ( 𝑘  −  ( 𝑐 ‘ ∅ ) )  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) )  =  ( 𝐺 ‘ ( 1o  ×  { ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) } ) ) ) | 
						
							| 112 | 108 110 111 | syl2anc | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) )  =  ( 𝐺 ‘ ( 1o  ×  { ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) } ) ) ) | 
						
							| 113 | 107 112 | eqtr4d | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  ( 𝐺 ‘ ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 ) )  =  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) ) ) | 
						
							| 114 | 95 113 | oveq12d | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) } )  →  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 ) ) )  =  ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) ) ) ) | 
						
							| 115 | 114 | mpteq2dva | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 ) ) ) )  =  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  ( 𝑐 ‘ ∅ ) ) ) ) ) ) | 
						
							| 116 | 92 115 | eqtr4d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  ∘  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( 𝑐 ‘ ∅ ) ) )  =  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 ) ) ) ) ) | 
						
							| 117 | 116 | oveq2d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑅  Σg  ( ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) )  ∘  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( 𝑐 ‘ ∅ ) ) ) )  =  ( 𝑅  Σg  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 ) ) ) ) ) ) | 
						
							| 118 | 75 117 | eqtrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑅  Σg  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 ) ) ) ) ) ) | 
						
							| 119 | 118 | mpteq2dva | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  Σg  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  Σg  ( 𝑐  ∈  { 𝑑  ∈  ( ℕ0  ↑m  1o )  ∣  𝑑  ∘r   ≤  ( 1o  ×  { 𝑘 } ) }  ↦  ( ( 𝐹 ‘ 𝑐 )  ·  ( 𝐺 ‘ ( ( 1o  ×  { 𝑘 } )  ∘f   −  𝑐 ) ) ) ) ) ) ) | 
						
							| 120 | 26 33 119 | 3eqtr4d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( coe1 ‘ ( 𝐹  ∙  𝐺 ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝑅  Σg  ( 𝑥  ∈  ( 0 ... 𝑘 )  ↦  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 )  ·  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘  −  𝑥 ) ) ) ) ) ) ) |