| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  1o  ∈  On ) | 
						
							| 3 |  | fvexd | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  ∧  𝑎  ∈  1o )  →  ( 𝑋 ‘ ∅ )  ∈  V ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  ∧  𝑎  ∈  1o )  →  𝐴  ∈  ℕ0 ) | 
						
							| 5 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 6 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 7 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 8 | 5 6 7 | mapsnconst | ⊢ ( 𝑋  ∈  ( ℕ0  ↑m  1o )  →  𝑋  =  ( 1o  ×  { ( 𝑋 ‘ ∅ ) } ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  𝑋  =  ( 1o  ×  { ( 𝑋 ‘ ∅ ) } ) ) | 
						
							| 10 |  | fconstmpt | ⊢ ( 1o  ×  { ( 𝑋 ‘ ∅ ) } )  =  ( 𝑎  ∈  1o  ↦  ( 𝑋 ‘ ∅ ) ) | 
						
							| 11 | 9 10 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  𝑋  =  ( 𝑎  ∈  1o  ↦  ( 𝑋 ‘ ∅ ) ) ) | 
						
							| 12 |  | fconstmpt | ⊢ ( 1o  ×  { 𝐴 } )  =  ( 𝑎  ∈  1o  ↦  𝐴 ) | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  ( 1o  ×  { 𝐴 } )  =  ( 𝑎  ∈  1o  ↦  𝐴 ) ) | 
						
							| 14 | 2 3 4 11 13 | ofrfval2 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  ( 𝑋  ∘r   ≤  ( 1o  ×  { 𝐴 } )  ↔  ∀ 𝑎  ∈  1o ( 𝑋 ‘ ∅ )  ≤  𝐴 ) ) | 
						
							| 15 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 16 |  | r19.3rzv | ⊢ ( 1o  ≠  ∅  →  ( ( 𝑋 ‘ ∅ )  ≤  𝐴  ↔  ∀ 𝑎  ∈  1o ( 𝑋 ‘ ∅ )  ≤  𝐴 ) ) | 
						
							| 17 | 15 16 | mp1i | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  ( ( 𝑋 ‘ ∅ )  ≤  𝐴  ↔  ∀ 𝑎  ∈  1o ( 𝑋 ‘ ∅ )  ≤  𝐴 ) ) | 
						
							| 18 |  | elmapi | ⊢ ( 𝑋  ∈  ( ℕ0  ↑m  1o )  →  𝑋 : 1o ⟶ ℕ0 ) | 
						
							| 19 |  | 0lt1o | ⊢ ∅  ∈  1o | 
						
							| 20 |  | ffvelcdm | ⊢ ( ( 𝑋 : 1o ⟶ ℕ0  ∧  ∅  ∈  1o )  →  ( 𝑋 ‘ ∅ )  ∈  ℕ0 ) | 
						
							| 21 | 18 19 20 | sylancl | ⊢ ( 𝑋  ∈  ( ℕ0  ↑m  1o )  →  ( 𝑋 ‘ ∅ )  ∈  ℕ0 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  ( 𝑋 ‘ ∅ )  ∈  ℕ0 ) | 
						
							| 23 | 22 | biantrurd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  ( ( 𝑋 ‘ ∅ )  ≤  𝐴  ↔  ( ( 𝑋 ‘ ∅ )  ∈  ℕ0  ∧  ( 𝑋 ‘ ∅ )  ≤  𝐴 ) ) ) | 
						
							| 24 |  | fznn0 | ⊢ ( 𝐴  ∈  ℕ0  →  ( ( 𝑋 ‘ ∅ )  ∈  ( 0 ... 𝐴 )  ↔  ( ( 𝑋 ‘ ∅ )  ∈  ℕ0  ∧  ( 𝑋 ‘ ∅ )  ≤  𝐴 ) ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  ( ( 𝑋 ‘ ∅ )  ∈  ( 0 ... 𝐴 )  ↔  ( ( 𝑋 ‘ ∅ )  ∈  ℕ0  ∧  ( 𝑋 ‘ ∅ )  ≤  𝐴 ) ) ) | 
						
							| 26 | 23 25 | bitr4d | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  ( ( 𝑋 ‘ ∅ )  ≤  𝐴  ↔  ( 𝑋 ‘ ∅ )  ∈  ( 0 ... 𝐴 ) ) ) | 
						
							| 27 | 14 17 26 | 3bitr2d | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑋  ∈  ( ℕ0  ↑m  1o ) )  →  ( 𝑋  ∘r   ≤  ( 1o  ×  { 𝐴 } )  ↔  ( 𝑋 ‘ ∅ )  ∈  ( 0 ... 𝐴 ) ) ) |