| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1pwmul.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 2 |  | coe1pwmul.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | coe1pwmul.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 4 |  | coe1pwmul.n | ⊢ 𝑁  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 5 |  | coe1pwmul.e | ⊢  ↑   =  ( .g ‘ 𝑁 ) | 
						
							| 6 |  | coe1pwmul.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 7 |  | coe1pwmul.t | ⊢  ·   =  ( .r ‘ 𝑃 ) | 
						
							| 8 |  | coe1pwmul.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 9 |  | coe1pwmul.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 10 |  | coe1pwmul.d | ⊢ ( 𝜑  →  𝐷  ∈  ℕ0 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 12 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 13 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 14 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 15 | 11 14 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 16 | 8 15 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 17 | 1 11 2 3 12 4 5 6 7 13 9 8 16 10 | coe1tmmul | ⊢ ( 𝜑  →  ( coe1 ‘ ( ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝐷  ↑  𝑋 ) )  ·  𝐴 ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝐷  ≤  𝑥 ,  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) ) ) ,   0  ) ) ) | 
						
							| 18 | 2 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 19 | 8 18 | syl | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  =  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝐷  ↑  𝑋 ) )  =  ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝐷  ↑  𝑋 ) ) ) | 
						
							| 22 | 2 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 23 | 8 22 | syl | ⊢ ( 𝜑  →  𝑃  ∈  LMod ) | 
						
							| 24 | 4 6 | mgpbas | ⊢ 𝐵  =  ( Base ‘ 𝑁 ) | 
						
							| 25 | 2 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 26 | 4 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  𝑁  ∈  Mnd ) | 
						
							| 27 | 8 25 26 | 3syl | ⊢ ( 𝜑  →  𝑁  ∈  Mnd ) | 
						
							| 28 | 3 2 6 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  𝐵 ) | 
						
							| 29 | 8 28 | syl | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 30 | 24 5 27 10 29 | mulgnn0cld | ⊢ ( 𝜑  →  ( 𝐷  ↑  𝑋 )  ∈  𝐵 ) | 
						
							| 31 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 32 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 33 | 6 31 12 32 | lmodvs1 | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( 𝐷  ↑  𝑋 )  ∈  𝐵 )  →  ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝐷  ↑  𝑋 ) )  =  ( 𝐷  ↑  𝑋 ) ) | 
						
							| 34 | 23 30 33 | syl2anc | ⊢ ( 𝜑  →  ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝐷  ↑  𝑋 ) )  =  ( 𝐷  ↑  𝑋 ) ) | 
						
							| 35 | 21 34 | eqtrd | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝐷  ↑  𝑋 ) )  =  ( 𝐷  ↑  𝑋 ) ) | 
						
							| 36 | 35 | fvoveq1d | ⊢ ( 𝜑  →  ( coe1 ‘ ( ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝐷  ↑  𝑋 ) )  ·  𝐴 ) )  =  ( coe1 ‘ ( ( 𝐷  ↑  𝑋 )  ·  𝐴 ) ) ) | 
						
							| 37 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝐷  ≤  𝑥 )  →  𝑅  ∈  Ring ) | 
						
							| 38 |  | eqid | ⊢ ( coe1 ‘ 𝐴 )  =  ( coe1 ‘ 𝐴 ) | 
						
							| 39 | 38 6 2 11 | coe1f | ⊢ ( 𝐴  ∈  𝐵  →  ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 40 | 9 39 | syl | ⊢ ( 𝜑  →  ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 41 | 40 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝐷  ≤  𝑥 )  →  ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 42 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝐷  ≤  𝑥 )  →  𝐷  ∈  ℕ0 ) | 
						
							| 43 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝐷  ≤  𝑥 )  →  𝑥  ∈  ℕ0 ) | 
						
							| 44 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝐷  ≤  𝑥 )  →  𝐷  ≤  𝑥 ) | 
						
							| 45 |  | nn0sub2 | ⊢ ( ( 𝐷  ∈  ℕ0  ∧  𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 )  →  ( 𝑥  −  𝐷 )  ∈  ℕ0 ) | 
						
							| 46 | 42 43 44 45 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝐷  ≤  𝑥 )  →  ( 𝑥  −  𝐷 )  ∈  ℕ0 ) | 
						
							| 47 | 41 46 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝐷  ≤  𝑥 )  →  ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 48 | 11 13 14 | ringlidm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) ) )  =  ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) ) ) | 
						
							| 49 | 37 47 48 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝐷  ≤  𝑥 )  →  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) ) )  =  ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) ) ) | 
						
							| 50 | 49 | ifeq1da | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  →  if ( 𝐷  ≤  𝑥 ,  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) ) ) ,   0  )  =  if ( 𝐷  ≤  𝑥 ,  ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) ) ,   0  ) ) | 
						
							| 51 | 50 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℕ0  ↦  if ( 𝐷  ≤  𝑥 ,  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) ) ) ,   0  ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝐷  ≤  𝑥 ,  ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) ) ,   0  ) ) ) | 
						
							| 52 | 17 36 51 | 3eqtr3d | ⊢ ( 𝜑  →  ( coe1 ‘ ( ( 𝐷  ↑  𝑋 )  ·  𝐴 ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝐷  ≤  𝑥 ,  ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) ) ,   0  ) ) ) |