Step |
Hyp |
Ref |
Expression |
1 |
|
coe1pwmul.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
2 |
|
coe1pwmul.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
coe1pwmul.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
4 |
|
coe1pwmul.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) |
5 |
|
coe1pwmul.e |
⊢ ↑ = ( .g ‘ 𝑁 ) |
6 |
|
coe1pwmul.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
7 |
|
coe1pwmul.t |
⊢ · = ( .r ‘ 𝑃 ) |
8 |
|
coe1pwmul.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
9 |
|
coe1pwmul.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
10 |
|
coe1pwmul.d |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
14 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
15 |
11 14
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
16 |
8 15
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
17 |
1 11 2 3 12 4 5 6 7 13 9 8 16 10
|
coe1tmmul |
⊢ ( 𝜑 → ( coe1 ‘ ( ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) · 𝐴 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) ) ) |
18 |
2
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
19 |
8 18
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) ) |
22 |
2
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
23 |
8 22
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
24 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
25 |
4
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝑁 ∈ Mnd ) |
26 |
8 24 25
|
3syl |
⊢ ( 𝜑 → 𝑁 ∈ Mnd ) |
27 |
3 2 6
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
28 |
8 27
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
29 |
4 6
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑁 ) |
30 |
29 5
|
mulgnn0cl |
⊢ ( ( 𝑁 ∈ Mnd ∧ 𝐷 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) |
31 |
26 10 28 30
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) |
32 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
33 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) |
34 |
6 32 12 33
|
lmodvs1 |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) = ( 𝐷 ↑ 𝑋 ) ) |
35 |
23 31 34
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) = ( 𝐷 ↑ 𝑋 ) ) |
36 |
21 35
|
eqtrd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) = ( 𝐷 ↑ 𝑋 ) ) |
37 |
36
|
fvoveq1d |
⊢ ( 𝜑 → ( coe1 ‘ ( ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) · 𝐴 ) ) = ( coe1 ‘ ( ( 𝐷 ↑ 𝑋 ) · 𝐴 ) ) ) |
38 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → 𝑅 ∈ Ring ) |
39 |
|
eqid |
⊢ ( coe1 ‘ 𝐴 ) = ( coe1 ‘ 𝐴 ) |
40 |
39 6 2 11
|
coe1f |
⊢ ( 𝐴 ∈ 𝐵 → ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
41 |
9 40
|
syl |
⊢ ( 𝜑 → ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
43 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → 𝐷 ∈ ℕ0 ) |
44 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → 𝑥 ∈ ℕ0 ) |
45 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → 𝐷 ≤ 𝑥 ) |
46 |
|
nn0sub2 |
⊢ ( ( 𝐷 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) → ( 𝑥 − 𝐷 ) ∈ ℕ0 ) |
47 |
43 44 45 46
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( 𝑥 − 𝐷 ) ∈ ℕ0 ) |
48 |
42 47
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ∈ ( Base ‘ 𝑅 ) ) |
49 |
11 13 14
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) = ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) |
50 |
38 48 49
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) = ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) |
51 |
50
|
ifeq1da |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → if ( 𝐷 ≤ 𝑥 , ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) = if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) |
52 |
51
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) ) |
53 |
17 37 52
|
3eqtr3d |
⊢ ( 𝜑 → ( coe1 ‘ ( ( 𝐷 ↑ 𝑋 ) · 𝐴 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) ) |