| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1sclmul.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | coe1sclmul.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | coe1sclmul.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | coe1sclmul.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 5 |  | coe1sclmul.t | ⊢  ∙   =  ( .r ‘ 𝑃 ) | 
						
							| 6 |  | coe1sclmul.u | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 7 | 1 2 3 4 5 6 | coe1sclmul | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  →  ( coe1 ‘ ( ( 𝐴 ‘ 𝑋 )  ∙  𝑌 ) )  =  ( ( ℕ0  ×  { 𝑋 } )  ∘f   ·  ( coe1 ‘ 𝑌 ) ) ) | 
						
							| 8 | 7 | 3expb | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 ) )  →  ( coe1 ‘ ( ( 𝐴 ‘ 𝑋 )  ∙  𝑌 ) )  =  ( ( ℕ0  ×  { 𝑋 } )  ∘f   ·  ( coe1 ‘ 𝑌 ) ) ) | 
						
							| 9 | 8 | 3adant3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  ∧   0   ∈  ℕ0 )  →  ( coe1 ‘ ( ( 𝐴 ‘ 𝑋 )  ∙  𝑌 ) )  =  ( ( ℕ0  ×  { 𝑋 } )  ∘f   ·  ( coe1 ‘ 𝑌 ) ) ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  ∧   0   ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 𝐴 ‘ 𝑋 )  ∙  𝑌 ) ) ‘  0  )  =  ( ( ( ℕ0  ×  { 𝑋 } )  ∘f   ·  ( coe1 ‘ 𝑌 ) ) ‘  0  ) ) | 
						
							| 11 |  | simp3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  ∧   0   ∈  ℕ0 )  →   0   ∈  ℕ0 ) | 
						
							| 12 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  ∧   0   ∈  ℕ0 )  →  ℕ0  ∈  V ) | 
						
							| 14 |  | simp2l | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  ∧   0   ∈  ℕ0 )  →  𝑋  ∈  𝐾 ) | 
						
							| 15 |  | simp2r | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  ∧   0   ∈  ℕ0 )  →  𝑌  ∈  𝐵 ) | 
						
							| 16 |  | eqid | ⊢ ( coe1 ‘ 𝑌 )  =  ( coe1 ‘ 𝑌 ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 18 | 16 2 1 17 | coe1f | ⊢ ( 𝑌  ∈  𝐵  →  ( coe1 ‘ 𝑌 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 19 |  | ffn | ⊢ ( ( coe1 ‘ 𝑌 ) : ℕ0 ⟶ ( Base ‘ 𝑅 )  →  ( coe1 ‘ 𝑌 )  Fn  ℕ0 ) | 
						
							| 20 | 15 18 19 | 3syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  ∧   0   ∈  ℕ0 )  →  ( coe1 ‘ 𝑌 )  Fn  ℕ0 ) | 
						
							| 21 |  | eqidd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  ∧   0   ∈  ℕ0 )  ∧   0   ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑌 ) ‘  0  )  =  ( ( coe1 ‘ 𝑌 ) ‘  0  ) ) | 
						
							| 22 | 13 14 20 21 | ofc1 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  ∧   0   ∈  ℕ0 )  ∧   0   ∈  ℕ0 )  →  ( ( ( ℕ0  ×  { 𝑋 } )  ∘f   ·  ( coe1 ‘ 𝑌 ) ) ‘  0  )  =  ( 𝑋  ·  ( ( coe1 ‘ 𝑌 ) ‘  0  ) ) ) | 
						
							| 23 | 11 22 | mpdan | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  ∧   0   ∈  ℕ0 )  →  ( ( ( ℕ0  ×  { 𝑋 } )  ∘f   ·  ( coe1 ‘ 𝑌 ) ) ‘  0  )  =  ( 𝑋  ·  ( ( coe1 ‘ 𝑌 ) ‘  0  ) ) ) | 
						
							| 24 | 10 23 | eqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐵 )  ∧   0   ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 𝐴 ‘ 𝑋 )  ∙  𝑌 ) ) ‘  0  )  =  ( 𝑋  ·  ( ( coe1 ‘ 𝑌 ) ‘  0  ) ) ) |