Metamath Proof Explorer


Theorem coe1sfi

Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 19-Jul-2019)

Ref Expression
Hypotheses coe1sfi.a 𝐴 = ( coe1𝐹 )
coe1sfi.b 𝐵 = ( Base ‘ 𝑃 )
coe1sfi.p 𝑃 = ( Poly1𝑅 )
coe1sfi.z 0 = ( 0g𝑅 )
Assertion coe1sfi ( 𝐹𝐵𝐴 finSupp 0 )

Proof

Step Hyp Ref Expression
1 coe1sfi.a 𝐴 = ( coe1𝐹 )
2 coe1sfi.b 𝐵 = ( Base ‘ 𝑃 )
3 coe1sfi.p 𝑃 = ( Poly1𝑅 )
4 coe1sfi.z 0 = ( 0g𝑅 )
5 df1o2 1o = { ∅ }
6 nn0ex 0 ∈ V
7 0ex ∅ ∈ V
8 eqid ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) )
9 5 6 7 8 mapsncnv ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) )
10 1 2 3 9 coe1fval2 ( 𝐹𝐵𝐴 = ( 𝐹 ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) )
11 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
12 eqid ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) )
13 3 2 ply1bascl2 ( 𝐹𝐵𝐹 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) )
14 3 2 elbasfv ( 𝐹𝐵𝑅 ∈ V )
15 11 12 4 13 14 mplelsfi ( 𝐹𝐵𝐹 finSupp 0 )
16 5 6 7 8 mapsnf1o2 ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ( ℕ0m 1o ) –1-1-onto→ ℕ0
17 f1ocnv ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ( ℕ0m 1o ) –1-1-onto→ ℕ0 ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ01-1-onto→ ( ℕ0m 1o ) )
18 f1of1 ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ01-1-onto→ ( ℕ0m 1o ) → ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ01-1→ ( ℕ0m 1o ) )
19 16 17 18 mp2b ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ01-1→ ( ℕ0m 1o )
20 19 a1i ( 𝐹𝐵 ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ01-1→ ( ℕ0m 1o ) )
21 4 fvexi 0 ∈ V
22 21 a1i ( 𝐹𝐵0 ∈ V )
23 id ( 𝐹𝐵𝐹𝐵 )
24 15 20 22 23 fsuppco ( 𝐹𝐵 → ( 𝐹 ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) finSupp 0 )
25 10 24 eqbrtrd ( 𝐹𝐵𝐴 finSupp 0 )