| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1sfi.a | ⊢ 𝐴  =  ( coe1 ‘ 𝐹 ) | 
						
							| 2 |  | coe1sfi.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | coe1sfi.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | coe1sfi.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 6 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 7 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 8 |  | eqid | ⊢ ( 𝑥  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑥 ‘ ∅ ) )  =  ( 𝑥  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑥 ‘ ∅ ) ) | 
						
							| 9 | 5 6 7 8 | mapsncnv | ⊢ ◡ ( 𝑥  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑥 ‘ ∅ ) )  =  ( 𝑦  ∈  ℕ0  ↦  ( 1o  ×  { 𝑦 } ) ) | 
						
							| 10 | 1 2 3 9 | coe1fval2 | ⊢ ( 𝐹  ∈  𝐵  →  𝐴  =  ( 𝐹  ∘  ◡ ( 𝑥  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑥 ‘ ∅ ) ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ ( 1o  mPoly  𝑅 ) )  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 13 | 3 2 | ply1bascl2 | ⊢ ( 𝐹  ∈  𝐵  →  𝐹  ∈  ( Base ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 14 | 11 12 4 13 | mplelsfi | ⊢ ( 𝐹  ∈  𝐵  →  𝐹  finSupp   0  ) | 
						
							| 15 | 5 6 7 8 | mapsnf1o2 | ⊢ ( 𝑥  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑥 ‘ ∅ ) ) : ( ℕ0  ↑m  1o ) –1-1-onto→ ℕ0 | 
						
							| 16 |  | f1ocnv | ⊢ ( ( 𝑥  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑥 ‘ ∅ ) ) : ( ℕ0  ↑m  1o ) –1-1-onto→ ℕ0  →  ◡ ( 𝑥  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1-onto→ ( ℕ0  ↑m  1o ) ) | 
						
							| 17 |  | f1of1 | ⊢ ( ◡ ( 𝑥  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1-onto→ ( ℕ0  ↑m  1o )  →  ◡ ( 𝑥  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1→ ( ℕ0  ↑m  1o ) ) | 
						
							| 18 | 15 16 17 | mp2b | ⊢ ◡ ( 𝑥  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1→ ( ℕ0  ↑m  1o ) | 
						
							| 19 | 18 | a1i | ⊢ ( 𝐹  ∈  𝐵  →  ◡ ( 𝑥  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1→ ( ℕ0  ↑m  1o ) ) | 
						
							| 20 | 4 | fvexi | ⊢  0   ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( 𝐹  ∈  𝐵  →   0   ∈  V ) | 
						
							| 22 |  | id | ⊢ ( 𝐹  ∈  𝐵  →  𝐹  ∈  𝐵 ) | 
						
							| 23 | 14 19 21 22 | fsuppco | ⊢ ( 𝐹  ∈  𝐵  →  ( 𝐹  ∘  ◡ ( 𝑥  ∈  ( ℕ0  ↑m  1o )  ↦  ( 𝑥 ‘ ∅ ) ) )  finSupp   0  ) | 
						
							| 24 | 10 23 | eqbrtrd | ⊢ ( 𝐹  ∈  𝐵  →  𝐴  finSupp   0  ) |