Step |
Hyp |
Ref |
Expression |
1 |
|
coe1sfi.a |
⊢ 𝐴 = ( coe1 ‘ 𝐹 ) |
2 |
|
coe1sfi.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
coe1sfi.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
coe1sfi.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
df1o2 |
⊢ 1o = { ∅ } |
6 |
|
nn0ex |
⊢ ℕ0 ∈ V |
7 |
|
0ex |
⊢ ∅ ∈ V |
8 |
|
eqid |
⊢ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) |
9 |
5 6 7 8
|
mapsncnv |
⊢ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) ) |
10 |
1 2 3 9
|
coe1fval2 |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 = ( 𝐹 ∘ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) |
11 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
12 |
|
eqid |
⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
13 |
3 2
|
ply1bascl2 |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
14 |
3 2
|
elbasfv |
⊢ ( 𝐹 ∈ 𝐵 → 𝑅 ∈ V ) |
15 |
11 12 4 13 14
|
mplelsfi |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 finSupp 0 ) |
16 |
5 6 7 8
|
mapsnf1o2 |
⊢ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1-onto→ ℕ0 |
17 |
|
f1ocnv |
⊢ ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1-onto→ ℕ0 → ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1-onto→ ( ℕ0 ↑m 1o ) ) |
18 |
|
f1of1 |
⊢ ( ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1-onto→ ( ℕ0 ↑m 1o ) → ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1→ ( ℕ0 ↑m 1o ) ) |
19 |
16 17 18
|
mp2b |
⊢ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1→ ( ℕ0 ↑m 1o ) |
20 |
19
|
a1i |
⊢ ( 𝐹 ∈ 𝐵 → ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1→ ( ℕ0 ↑m 1o ) ) |
21 |
4
|
fvexi |
⊢ 0 ∈ V |
22 |
21
|
a1i |
⊢ ( 𝐹 ∈ 𝐵 → 0 ∈ V ) |
23 |
|
id |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵 ) |
24 |
15 20 22 23
|
fsuppco |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ∘ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) finSupp 0 ) |
25 |
10 24
|
eqbrtrd |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |