| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1sub.y | ⊢ 𝑌  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | coe1sub.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | coe1sub.p | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 4 |  | coe1sub.q | ⊢ 𝑁  =  ( -g ‘ 𝑅 ) | 
						
							| 5 |  | simpl1 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 6 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑌  ∈  Ring ) | 
						
							| 7 |  | ringgrp | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Grp ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑅  ∈  Ring  →  𝑌  ∈  Grp ) | 
						
							| 9 | 2 3 | grpsubcl | ⊢ ( ( 𝑌  ∈  Grp  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 𝐹  −  𝐺 )  ∈  𝐵 ) | 
						
							| 10 | 8 9 | syl3an1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 𝐹  −  𝐺 )  ∈  𝐵 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  ( 𝐹  −  𝐺 )  ∈  𝐵 ) | 
						
							| 12 |  | simpl3 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  𝐺  ∈  𝐵 ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  𝑋  ∈  ℕ0 ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 15 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 16 | 1 2 14 15 | coe1addfv | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝐹  −  𝐺 )  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 𝐹  −  𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) ‘ 𝑋 )  =  ( ( ( coe1 ‘ ( 𝐹  −  𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) ) | 
						
							| 17 | 5 11 12 13 16 | syl31anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 𝐹  −  𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) ‘ 𝑋 )  =  ( ( ( coe1 ‘ ( 𝐹  −  𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) ) | 
						
							| 18 | 8 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  𝑌  ∈  Grp ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  𝑌  ∈  Grp ) | 
						
							| 20 |  | simpl2 | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  𝐹  ∈  𝐵 ) | 
						
							| 21 | 2 14 3 | grpnpcan | ⊢ ( ( 𝑌  ∈  Grp  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( ( 𝐹  −  𝐺 ) ( +g ‘ 𝑌 ) 𝐺 )  =  𝐹 ) | 
						
							| 22 | 19 20 12 21 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  ( ( 𝐹  −  𝐺 ) ( +g ‘ 𝑌 ) 𝐺 )  =  𝐹 ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  ( coe1 ‘ ( ( 𝐹  −  𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) )  =  ( coe1 ‘ 𝐹 ) ) | 
						
							| 24 | 23 | fveq1d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 𝐹  −  𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) ‘ 𝑋 )  =  ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) | 
						
							| 25 | 17 24 | eqtr3d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  ( ( ( coe1 ‘ ( 𝐹  −  𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) )  =  ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) | 
						
							| 26 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  𝑅  ∈  Grp ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  𝑅  ∈  Grp ) | 
						
							| 29 |  | eqid | ⊢ ( coe1 ‘ 𝐹 )  =  ( coe1 ‘ 𝐹 ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 31 | 29 2 1 30 | coe1f | ⊢ ( 𝐹  ∈  𝐵  →  ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 32 | 31 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 33 | 32 | ffvelcdmda | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 34 |  | eqid | ⊢ ( coe1 ‘ 𝐺 )  =  ( coe1 ‘ 𝐺 ) | 
						
							| 35 | 34 2 1 30 | coe1f | ⊢ ( 𝐺  ∈  𝐵  →  ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 36 | 35 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 37 | 36 | ffvelcdmda | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 38 |  | eqid | ⊢ ( coe1 ‘ ( 𝐹  −  𝐺 ) )  =  ( coe1 ‘ ( 𝐹  −  𝐺 ) ) | 
						
							| 39 | 38 2 1 30 | coe1f | ⊢ ( ( 𝐹  −  𝐺 )  ∈  𝐵  →  ( coe1 ‘ ( 𝐹  −  𝐺 ) ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 40 | 10 39 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( coe1 ‘ ( 𝐹  −  𝐺 ) ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 41 | 40 | ffvelcdmda | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝐹  −  𝐺 ) ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 42 | 30 15 4 | grpsubadd | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑅 )  ∧  ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝐹  −  𝐺 ) ) ‘ 𝑋 )  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) )  =  ( ( coe1 ‘ ( 𝐹  −  𝐺 ) ) ‘ 𝑋 )  ↔  ( ( ( coe1 ‘ ( 𝐹  −  𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) )  =  ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) ) | 
						
							| 43 | 28 33 37 41 42 | syl13anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  ( ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) )  =  ( ( coe1 ‘ ( 𝐹  −  𝐺 ) ) ‘ 𝑋 )  ↔  ( ( ( coe1 ‘ ( 𝐹  −  𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) )  =  ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) ) | 
						
							| 44 | 25 43 | mpbird | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) )  =  ( ( coe1 ‘ ( 𝐹  −  𝐺 ) ) ‘ 𝑋 ) ) | 
						
							| 45 | 44 | eqcomd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  ∧  𝑋  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝐹  −  𝐺 ) ) ‘ 𝑋 )  =  ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) ) |