| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1term.1 | ⊢ 𝐹  =  ( 𝑧  ∈  ℂ  ↦  ( 𝐴  ·  ( 𝑧 ↑ 𝑁 ) ) ) | 
						
							| 2 | 1 | coe1termlem | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( coeff ‘ 𝐹 )  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) )  ∧  ( 𝐴  ≠  0  →  ( deg ‘ 𝐹 )  =  𝑁 ) ) ) | 
						
							| 3 | 2 | simpld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( coeff ‘ 𝐹 )  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ) | 
						
							| 4 | 3 | fveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( coeff ‘ 𝐹 ) ‘ 𝑀 )  =  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑀 ) ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( coeff ‘ 𝐹 ) ‘ 𝑀 )  =  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑀 ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) )  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) | 
						
							| 7 |  | eqeq1 | ⊢ ( 𝑛  =  𝑀  →  ( 𝑛  =  𝑁  ↔  𝑀  =  𝑁 ) ) | 
						
							| 8 | 7 | ifbid | ⊢ ( 𝑛  =  𝑀  →  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 )  =  if ( 𝑀  =  𝑁 ,  𝐴 ,  0 ) ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 10 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 11 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 12 |  | ifcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ∈  ℂ )  →  if ( 𝑀  =  𝑁 ,  𝐴 ,  0 )  ∈  ℂ ) | 
						
							| 13 | 10 11 12 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  if ( 𝑀  =  𝑁 ,  𝐴 ,  0 )  ∈  ℂ ) | 
						
							| 14 | 6 8 9 13 | fvmptd3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑀 )  =  if ( 𝑀  =  𝑁 ,  𝐴 ,  0 ) ) | 
						
							| 15 | 5 14 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( coeff ‘ 𝐹 ) ‘ 𝑀 )  =  if ( 𝑀  =  𝑁 ,  𝐴 ,  0 ) ) |