Step |
Hyp |
Ref |
Expression |
1 |
|
coe1term.1 |
⊢ 𝐹 = ( 𝑧 ∈ ℂ ↦ ( 𝐴 · ( 𝑧 ↑ 𝑁 ) ) ) |
2 |
1
|
coe1termlem |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( coeff ‘ 𝐹 ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ∧ ( 𝐴 ≠ 0 → ( deg ‘ 𝐹 ) = 𝑁 ) ) ) |
3 |
2
|
simpld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( coeff ‘ 𝐹 ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ) |
4 |
3
|
fveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( coeff ‘ 𝐹 ) ‘ 𝑀 ) = ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑀 ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( coeff ‘ 𝐹 ) ‘ 𝑀 ) = ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑀 ) ) |
6 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) |
7 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑀 → ( 𝑛 = 𝑁 ↔ 𝑀 = 𝑁 ) ) |
8 |
7
|
ifbid |
⊢ ( 𝑛 = 𝑀 → if ( 𝑛 = 𝑁 , 𝐴 , 0 ) = if ( 𝑀 = 𝑁 , 𝐴 , 0 ) ) |
9 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) |
10 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
11 |
|
0cn |
⊢ 0 ∈ ℂ |
12 |
|
ifcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑀 = 𝑁 , 𝐴 , 0 ) ∈ ℂ ) |
13 |
10 11 12
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → if ( 𝑀 = 𝑁 , 𝐴 , 0 ) ∈ ℂ ) |
14 |
6 8 9 13
|
fvmptd3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑁 , 𝐴 , 0 ) ) ‘ 𝑀 ) = if ( 𝑀 = 𝑁 , 𝐴 , 0 ) ) |
15 |
5 14
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( coeff ‘ 𝐹 ) ‘ 𝑀 ) = if ( 𝑀 = 𝑁 , 𝐴 , 0 ) ) |