| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1term.1 | ⊢ 𝐹  =  ( 𝑧  ∈  ℂ  ↦  ( 𝐴  ·  ( 𝑧 ↑ 𝑁 ) ) ) | 
						
							| 2 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 3 | 1 | ply1term | ⊢ ( ( ℂ  ⊆  ℂ  ∧  𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 4 | 2 3 | mp3an1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 7 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 8 |  | ifcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ∈  ℂ )  →  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 )  ∈  ℂ ) | 
						
							| 9 | 6 7 8 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 )  ∈  ℂ ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 )  ∈  ℂ ) | 
						
							| 11 | 10 | fmpttd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) : ℕ0 ⟶ ℂ ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) )  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) | 
						
							| 13 |  | eqeq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  =  𝑁  ↔  𝑘  =  𝑁 ) ) | 
						
							| 14 | 13 | ifbid | ⊢ ( 𝑛  =  𝑘  →  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 )  =  if ( 𝑘  =  𝑁 ,  𝐴 ,  0 ) ) | 
						
							| 15 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 16 |  | ifcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ∈  ℂ )  →  if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ∈  ℂ ) | 
						
							| 17 | 6 7 16 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ∈  ℂ ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ∈  ℂ ) | 
						
							| 19 | 12 14 15 18 | fvmptd3 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑘 )  =  if ( 𝑘  =  𝑁 ,  𝐴 ,  0 ) ) | 
						
							| 20 | 19 | neeq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑘 )  ≠  0  ↔  if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ≠  0 ) ) | 
						
							| 21 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 22 | 21 | leidd | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ≤  𝑁 ) | 
						
							| 23 | 22 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  𝑁  ≤  𝑁 ) | 
						
							| 24 |  | iffalse | ⊢ ( ¬  𝑘  =  𝑁  →  if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  =  0 ) | 
						
							| 25 | 24 | necon1ai | ⊢ ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ≠  0  →  𝑘  =  𝑁 ) | 
						
							| 26 | 25 | breq1d | ⊢ ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ≠  0  →  ( 𝑘  ≤  𝑁  ↔  𝑁  ≤  𝑁 ) ) | 
						
							| 27 | 23 26 | syl5ibrcom | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ≠  0  →  𝑘  ≤  𝑁 ) ) | 
						
							| 28 | 20 27 | sylbid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) | 
						
							| 29 | 28 | ralrimiva | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ∀ 𝑘  ∈  ℕ0 ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) | 
						
							| 30 |  | plyco0 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) : ℕ0 ⟶ ℂ )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) )  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) ) | 
						
							| 31 | 5 11 30 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) )  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) ) | 
						
							| 32 | 29 31 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) )  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 33 | 1 | ply1termlem | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 34 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 35 | 19 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 36 | 34 35 | sylan2 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 37 | 36 | sumeq2dv | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 38 | 37 | mpteq2dv | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( if ( 𝑘  =  𝑁 ,  𝐴 ,  0 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 39 | 33 38 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 40 | 4 5 11 32 39 | coeeq | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( coeff ‘ 𝐹 )  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ) | 
						
							| 41 | 4 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ≠  0 )  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 42 | 5 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ≠  0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 43 | 11 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ≠  0 )  →  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) : ℕ0 ⟶ ℂ ) | 
						
							| 44 | 32 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ≠  0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) )  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 45 | 39 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ≠  0 )  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 46 |  | iftrue | ⊢ ( 𝑛  =  𝑁  →  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 )  =  𝐴 ) | 
						
							| 47 | 46 12 | fvmptg | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐴  ∈  ℂ )  →  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑁 )  =  𝐴 ) | 
						
							| 48 | 47 | ancoms | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑁 )  =  𝐴 ) | 
						
							| 49 | 48 | neeq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑁 )  ≠  0  ↔  𝐴  ≠  0 ) ) | 
						
							| 50 | 49 | biimpar | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ≠  0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) ) ‘ 𝑁 )  ≠  0 ) | 
						
							| 51 | 41 42 43 44 45 50 | dgreq | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ≠  0 )  →  ( deg ‘ 𝐹 )  =  𝑁 ) | 
						
							| 52 | 51 | ex | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  ≠  0  →  ( deg ‘ 𝐹 )  =  𝑁 ) ) | 
						
							| 53 | 40 52 | jca | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( coeff ‘ 𝐹 )  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  𝑁 ,  𝐴 ,  0 ) )  ∧  ( 𝐴  ≠  0  →  ( deg ‘ 𝐹 )  =  𝑁 ) ) ) |