Step |
Hyp |
Ref |
Expression |
1 |
|
coe1tm.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
2 |
|
coe1tm.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
3 |
|
coe1tm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
coe1tm.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
5 |
|
coe1tm.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
6 |
|
coe1tm.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) |
7 |
|
coe1tm.e |
⊢ ↑ = ( .g ‘ 𝑁 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
9 |
2 3 4 5 6 7 8
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ) |
10 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) |
11 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) |
12 |
10 8 3 11
|
coe1fval2 |
⊢ ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) ) |
13 |
9 12
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) ) |
14 |
|
fconst6g |
⊢ ( 𝑥 ∈ ℕ0 → ( 1o × { 𝑥 } ) : 1o ⟶ ℕ0 ) |
15 |
|
nn0ex |
⊢ ℕ0 ∈ V |
16 |
|
1oex |
⊢ 1o ∈ V |
17 |
15 16
|
elmap |
⊢ ( ( 1o × { 𝑥 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 𝑥 } ) : 1o ⟶ ℕ0 ) |
18 |
14 17
|
sylibr |
⊢ ( 𝑥 ∈ ℕ0 → ( 1o × { 𝑥 } ) ∈ ( ℕ0 ↑m 1o ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 1o × { 𝑥 } ) ∈ ( ℕ0 ↑m 1o ) ) |
20 |
|
eqidd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) |
21 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) = ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
22 |
6 8
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑁 ) |
23 |
22
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) = ( Base ‘ 𝑁 ) ) |
24 |
|
eqid |
⊢ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) = ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) |
25 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
26 |
3 25 8
|
ply1bas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
27 |
24 26
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
28 |
27
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
29 |
|
ssv |
⊢ ( Base ‘ 𝑃 ) ⊆ V |
30 |
29
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) ⊆ V ) |
31 |
|
ovexd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ V ) |
32 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
33 |
6 32
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝑁 ) |
34 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
35 |
3 34 32
|
ply1mulr |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
36 |
24 35
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
37 |
33 36
|
eqtr3i |
⊢ ( +g ‘ 𝑁 ) = ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
38 |
37
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( +g ‘ 𝑁 ) = ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
39 |
38
|
oveqdr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑦 ) ) |
40 |
7 21 23 28 30 31 39
|
mulgpropd |
⊢ ( 𝑅 ∈ Ring → ↑ = ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
41 |
40
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ↑ = ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
42 |
|
eqidd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐷 = 𝐷 ) |
43 |
4
|
vr1val |
⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
44 |
43
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
45 |
41 42 44
|
oveq123d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐷 ↑ 𝑋 ) = ( 𝐷 ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
46 |
45
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) = ( 𝐶 · ( 𝐷 ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) ) |
47 |
|
psr1baslem |
⊢ ( ℕ0 ↑m 1o ) = { 𝑎 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } |
48 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
49 |
|
1on |
⊢ 1o ∈ On |
50 |
49
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 1o ∈ On ) |
51 |
|
eqid |
⊢ ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 ) |
52 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
53 |
|
0lt1o |
⊢ ∅ ∈ 1o |
54 |
53
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ∅ ∈ 1o ) |
55 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐷 ∈ ℕ0 ) |
56 |
34 47 1 48 50 24 21 51 52 54 55
|
mplcoe3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , ( 1r ‘ 𝑅 ) , 0 ) ) = ( 𝐷 ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
57 |
56
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝐶 · ( 𝐷 ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) ) |
58 |
3 34 5
|
ply1vsca |
⊢ · = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) |
59 |
|
elsni |
⊢ ( 𝑏 ∈ { ∅ } → 𝑏 = ∅ ) |
60 |
|
df1o2 |
⊢ 1o = { ∅ } |
61 |
59 60
|
eleq2s |
⊢ ( 𝑏 ∈ 1o → 𝑏 = ∅ ) |
62 |
61
|
iftrued |
⊢ ( 𝑏 ∈ 1o → if ( 𝑏 = ∅ , 𝐷 , 0 ) = 𝐷 ) |
63 |
62
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑏 ∈ 1o ) → if ( 𝑏 = ∅ , 𝐷 , 0 ) = 𝐷 ) |
64 |
63
|
mpteq2dva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) = ( 𝑏 ∈ 1o ↦ 𝐷 ) ) |
65 |
|
fconstmpt |
⊢ ( 1o × { 𝐷 } ) = ( 𝑏 ∈ 1o ↦ 𝐷 ) |
66 |
64 65
|
eqtr4di |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) = ( 1o × { 𝐷 } ) ) |
67 |
|
fconst6g |
⊢ ( 𝐷 ∈ ℕ0 → ( 1o × { 𝐷 } ) : 1o ⟶ ℕ0 ) |
68 |
15 16
|
elmap |
⊢ ( ( 1o × { 𝐷 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 𝐷 } ) : 1o ⟶ ℕ0 ) |
69 |
67 68
|
sylibr |
⊢ ( 𝐷 ∈ ℕ0 → ( 1o × { 𝐷 } ) ∈ ( ℕ0 ↑m 1o ) ) |
70 |
69
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 1o × { 𝐷 } ) ∈ ( ℕ0 ↑m 1o ) ) |
71 |
66 70
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ∈ ( ℕ0 ↑m 1o ) ) |
72 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐶 ∈ 𝐾 ) |
73 |
34 58 47 48 1 2 50 52 71 72
|
mplmon2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) ) |
74 |
46 57 73
|
3eqtr2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) = ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) ) |
75 |
|
eqeq1 |
⊢ ( 𝑦 = ( 1o × { 𝑥 } ) → ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ↔ ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ) ) |
76 |
75
|
ifbid |
⊢ ( 𝑦 = ( 1o × { 𝑥 } ) → if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) = if ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) |
77 |
19 20 74 76
|
fmptco |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) ) |
78 |
66
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) = ( 1o × { 𝐷 } ) ) |
79 |
78
|
eqeq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ↔ ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) ) ) |
80 |
|
fveq1 |
⊢ ( ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) → ( ( 1o × { 𝑥 } ) ‘ ∅ ) = ( ( 1o × { 𝐷 } ) ‘ ∅ ) ) |
81 |
|
vex |
⊢ 𝑥 ∈ V |
82 |
81
|
fvconst2 |
⊢ ( ∅ ∈ 1o → ( ( 1o × { 𝑥 } ) ‘ ∅ ) = 𝑥 ) |
83 |
53 82
|
mp1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) ‘ ∅ ) = 𝑥 ) |
84 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝐷 ∈ ℕ0 ) |
85 |
|
fvconst2g |
⊢ ( ( 𝐷 ∈ ℕ0 ∧ ∅ ∈ 1o ) → ( ( 1o × { 𝐷 } ) ‘ ∅ ) = 𝐷 ) |
86 |
84 53 85
|
sylancl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝐷 } ) ‘ ∅ ) = 𝐷 ) |
87 |
83 86
|
eqeq12d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( ( 1o × { 𝑥 } ) ‘ ∅ ) = ( ( 1o × { 𝐷 } ) ‘ ∅ ) ↔ 𝑥 = 𝐷 ) ) |
88 |
80 87
|
syl5ib |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) → 𝑥 = 𝐷 ) ) |
89 |
|
sneq |
⊢ ( 𝑥 = 𝐷 → { 𝑥 } = { 𝐷 } ) |
90 |
89
|
xpeq2d |
⊢ ( 𝑥 = 𝐷 → ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) ) |
91 |
88 90
|
impbid1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) ↔ 𝑥 = 𝐷 ) ) |
92 |
79 91
|
bitrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ↔ 𝑥 = 𝐷 ) ) |
93 |
92
|
ifbid |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → if ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) = if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) |
94 |
93
|
mpteq2dva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑥 ∈ ℕ0 ↦ if ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ) |
95 |
13 77 94
|
3eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ) |