Step |
Hyp |
Ref |
Expression |
1 |
|
coe1tm.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
2 |
|
coe1tm.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
3 |
|
coe1tm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
coe1tm.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
5 |
|
coe1tm.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
6 |
|
coe1tm.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) |
7 |
|
coe1tm.e |
⊢ ↑ = ( .g ‘ 𝑁 ) |
8 |
1 2 3 4 5 6 7
|
coe1tm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ) |
9 |
8
|
fveq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) = ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ‘ 𝐷 ) ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) |
11 |
|
iftrue |
⊢ ( 𝑥 = 𝐷 → if ( 𝑥 = 𝐷 , 𝐶 , 0 ) = 𝐶 ) |
12 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐷 ∈ ℕ0 ) |
13 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐶 ∈ 𝐾 ) |
14 |
10 11 12 13
|
fvmptd3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ‘ 𝐷 ) = 𝐶 ) |
15 |
9 14
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) = 𝐶 ) |