| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1tm.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 2 |  | coe1tm.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | coe1tm.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | coe1tm.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 5 |  | coe1tm.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 6 |  | coe1tm.n | ⊢ 𝑁  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 7 |  | coe1tm.e | ⊢  ↑   =  ( .g ‘ 𝑁 ) | 
						
							| 8 |  | coe1tmfv2.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 9 |  | coe1tmfv2.c | ⊢ ( 𝜑  →  𝐶  ∈  𝐾 ) | 
						
							| 10 |  | coe1tmfv2.d | ⊢ ( 𝜑  →  𝐷  ∈  ℕ0 ) | 
						
							| 11 |  | coe1tmfv2.f | ⊢ ( 𝜑  →  𝐹  ∈  ℕ0 ) | 
						
							| 12 |  | coe1tmfv2.q | ⊢ ( 𝜑  →  𝐷  ≠  𝐹 ) | 
						
							| 13 | 1 2 3 4 5 6 7 | coe1tm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐶  ∈  𝐾  ∧  𝐷  ∈  ℕ0 )  →  ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  𝐷 ,  𝐶 ,   0  ) ) ) | 
						
							| 14 | 8 9 10 13 | syl3anc | ⊢ ( 𝜑  →  ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  𝐷 ,  𝐶 ,   0  ) ) ) | 
						
							| 15 | 14 | fveq1d | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ 𝐹 )  =  ( ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  𝐷 ,  𝐶 ,   0  ) ) ‘ 𝐹 ) ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  𝐷 ,  𝐶 ,   0  ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  𝐷 ,  𝐶 ,   0  ) ) | 
						
							| 17 |  | eqeq1 | ⊢ ( 𝑥  =  𝐹  →  ( 𝑥  =  𝐷  ↔  𝐹  =  𝐷 ) ) | 
						
							| 18 | 17 | ifbid | ⊢ ( 𝑥  =  𝐹  →  if ( 𝑥  =  𝐷 ,  𝐶 ,   0  )  =  if ( 𝐹  =  𝐷 ,  𝐶 ,   0  ) ) | 
						
							| 19 | 2 1 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  𝐾 ) | 
						
							| 20 | 8 19 | syl | ⊢ ( 𝜑  →   0   ∈  𝐾 ) | 
						
							| 21 | 9 20 | ifcld | ⊢ ( 𝜑  →  if ( 𝐹  =  𝐷 ,  𝐶 ,   0  )  ∈  𝐾 ) | 
						
							| 22 | 16 18 11 21 | fvmptd3 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  𝐷 ,  𝐶 ,   0  ) ) ‘ 𝐹 )  =  if ( 𝐹  =  𝐷 ,  𝐶 ,   0  ) ) | 
						
							| 23 | 12 | necomd | ⊢ ( 𝜑  →  𝐹  ≠  𝐷 ) | 
						
							| 24 | 23 | neneqd | ⊢ ( 𝜑  →  ¬  𝐹  =  𝐷 ) | 
						
							| 25 | 24 | iffalsed | ⊢ ( 𝜑  →  if ( 𝐹  =  𝐷 ,  𝐶 ,   0  )  =   0  ) | 
						
							| 26 | 15 22 25 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ 𝐹 )  =   0  ) |