| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1tm.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 2 |  | coe1tm.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | coe1tm.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | coe1tm.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 5 |  | coe1tm.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 6 |  | coe1tm.n | ⊢ 𝑁  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 7 |  | coe1tm.e | ⊢  ↑   =  ( .g ‘ 𝑁 ) | 
						
							| 8 |  | coe1tmmul.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 9 |  | coe1tmmul.t | ⊢  ∙   =  ( .r ‘ 𝑃 ) | 
						
							| 10 |  | coe1tmmul.u | ⊢  ×   =  ( .r ‘ 𝑅 ) | 
						
							| 11 |  | coe1tmmul.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 12 |  | coe1tmmul.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 13 |  | coe1tmmul.c | ⊢ ( 𝜑  →  𝐶  ∈  𝐾 ) | 
						
							| 14 |  | coe1tmmul.d | ⊢ ( 𝜑  →  𝐷  ∈  ℕ0 ) | 
						
							| 15 | 2 3 4 5 6 7 8 | ply1tmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐶  ∈  𝐾  ∧  𝐷  ∈  ℕ0 )  →  ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) )  ∈  𝐵 ) | 
						
							| 16 | 12 13 14 15 | syl3anc | ⊢ ( 𝜑  →  ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) )  ∈  𝐵 ) | 
						
							| 17 | 3 9 10 8 | coe1mul | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐴  ∈  𝐵  ∧  ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) )  ∈  𝐵 )  →  ( coe1 ‘ ( 𝐴  ∙  ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) )  =  ( 𝑥  ∈  ℕ0  ↦  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) ) ) ) | 
						
							| 18 | 12 11 16 17 | syl3anc | ⊢ ( 𝜑  →  ( coe1 ‘ ( 𝐴  ∙  ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) )  =  ( 𝑥  ∈  ℕ0  ↦  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) ) ) ) | 
						
							| 19 |  | eqeq2 | ⊢ ( ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 )  =  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  )  →  ( ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 )  ↔  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) )  =  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) ) | 
						
							| 20 |  | eqeq2 | ⊢ (  0   =  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  )  →  ( ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) )  =   0   ↔  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) )  =  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) ) | 
						
							| 21 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  𝑅  ∈  Ring ) | 
						
							| 22 |  | ringmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  𝑅  ∈  Mnd ) | 
						
							| 24 |  | ovex | ⊢ ( 0 ... 𝑥 )  ∈  V | 
						
							| 25 | 24 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( 0 ... 𝑥 )  ∈  V ) | 
						
							| 26 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  𝐷  ≤  𝑥 ) | 
						
							| 27 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  𝐷  ∈  ℕ0 ) | 
						
							| 28 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  𝑥  ∈  ℕ0 ) | 
						
							| 29 |  | nn0sub | ⊢ ( ( 𝐷  ∈  ℕ0  ∧  𝑥  ∈  ℕ0 )  →  ( 𝐷  ≤  𝑥  ↔  ( 𝑥  −  𝐷 )  ∈  ℕ0 ) ) | 
						
							| 30 | 27 28 29 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( 𝐷  ≤  𝑥  ↔  ( 𝑥  −  𝐷 )  ∈  ℕ0 ) ) | 
						
							| 31 | 26 30 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( 𝑥  −  𝐷 )  ∈  ℕ0 ) | 
						
							| 32 | 27 | nn0ge0d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  0  ≤  𝐷 ) | 
						
							| 33 |  | nn0re | ⊢ ( 𝑥  ∈  ℕ0  →  𝑥  ∈  ℝ ) | 
						
							| 34 | 33 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 35 | 14 | nn0red | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 37 | 34 36 | subge02d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( 0  ≤  𝐷  ↔  ( 𝑥  −  𝐷 )  ≤  𝑥 ) ) | 
						
							| 38 | 32 37 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( 𝑥  −  𝐷 )  ≤  𝑥 ) | 
						
							| 39 |  | fznn0 | ⊢ ( 𝑥  ∈  ℕ0  →  ( ( 𝑥  −  𝐷 )  ∈  ( 0 ... 𝑥 )  ↔  ( ( 𝑥  −  𝐷 )  ∈  ℕ0  ∧  ( 𝑥  −  𝐷 )  ≤  𝑥 ) ) ) | 
						
							| 40 | 39 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( ( 𝑥  −  𝐷 )  ∈  ( 0 ... 𝑥 )  ↔  ( ( 𝑥  −  𝐷 )  ∈  ℕ0  ∧  ( 𝑥  −  𝐷 )  ≤  𝑥 ) ) ) | 
						
							| 41 | 31 38 40 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( 𝑥  −  𝐷 )  ∈  ( 0 ... 𝑥 ) ) | 
						
							| 42 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  𝑅  ∈  Ring ) | 
						
							| 43 |  | eqid | ⊢ ( coe1 ‘ 𝐴 )  =  ( coe1 ‘ 𝐴 ) | 
						
							| 44 | 43 8 3 2 | coe1f | ⊢ ( 𝐴  ∈  𝐵  →  ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ 𝐾 ) | 
						
							| 45 | 11 44 | syl | ⊢ ( 𝜑  →  ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ 𝐾 ) | 
						
							| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ 𝐾 ) | 
						
							| 47 |  | elfznn0 | ⊢ ( 𝑦  ∈  ( 0 ... 𝑥 )  →  𝑦  ∈  ℕ0 ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  𝑦  ∈  ℕ0 ) | 
						
							| 49 | 46 48 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ∈  𝐾 ) | 
						
							| 50 |  | eqid | ⊢ ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) )  =  ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) | 
						
							| 51 | 50 8 3 2 | coe1f | ⊢ ( ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) )  ∈  𝐵  →  ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) : ℕ0 ⟶ 𝐾 ) | 
						
							| 52 | 16 51 | syl | ⊢ ( 𝜑  →  ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) : ℕ0 ⟶ 𝐾 ) | 
						
							| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) : ℕ0 ⟶ 𝐾 ) | 
						
							| 54 |  | fznn0sub | ⊢ ( 𝑦  ∈  ( 0 ... 𝑥 )  →  ( 𝑥  −  𝑦 )  ∈  ℕ0 ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  ( 𝑥  −  𝑦 )  ∈  ℕ0 ) | 
						
							| 56 | 53 55 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) )  ∈  𝐾 ) | 
						
							| 57 | 2 10 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ∈  𝐾  ∧  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) )  ∈  𝐾 )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) )  ∈  𝐾 ) | 
						
							| 58 | 42 49 56 57 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) )  ∈  𝐾 ) | 
						
							| 59 | 58 | fmpttd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) : ( 0 ... 𝑥 ) ⟶ 𝐾 ) | 
						
							| 60 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( ( 0 ... 𝑥 )  ∖  { ( 𝑥  −  𝐷 ) } ) )  →  𝑅  ∈  Ring ) | 
						
							| 61 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( ( 0 ... 𝑥 )  ∖  { ( 𝑥  −  𝐷 ) } ) )  →  𝐶  ∈  𝐾 ) | 
						
							| 62 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( ( 0 ... 𝑥 )  ∖  { ( 𝑥  −  𝐷 ) } ) )  →  𝐷  ∈  ℕ0 ) | 
						
							| 63 |  | eldifi | ⊢ ( 𝑦  ∈  ( ( 0 ... 𝑥 )  ∖  { ( 𝑥  −  𝐷 ) } )  →  𝑦  ∈  ( 0 ... 𝑥 ) ) | 
						
							| 64 | 63 54 | syl | ⊢ ( 𝑦  ∈  ( ( 0 ... 𝑥 )  ∖  { ( 𝑥  −  𝐷 ) } )  →  ( 𝑥  −  𝑦 )  ∈  ℕ0 ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( ( 0 ... 𝑥 )  ∖  { ( 𝑥  −  𝐷 ) } ) )  →  ( 𝑥  −  𝑦 )  ∈  ℕ0 ) | 
						
							| 66 |  | eldifsn | ⊢ ( 𝑦  ∈  ( ( 0 ... 𝑥 )  ∖  { ( 𝑥  −  𝐷 ) } )  ↔  ( 𝑦  ∈  ( 0 ... 𝑥 )  ∧  𝑦  ≠  ( 𝑥  −  𝐷 ) ) ) | 
						
							| 67 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  𝑥  ∈  ℕ0 ) | 
						
							| 68 | 67 | nn0cnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 69 | 47 | nn0cnd | ⊢ ( 𝑦  ∈  ( 0 ... 𝑥 )  →  𝑦  ∈  ℂ ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 71 | 68 70 | nncand | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  ( 𝑥  −  ( 𝑥  −  𝑦 ) )  =  𝑦 ) | 
						
							| 72 | 71 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  𝑦  =  ( 𝑥  −  ( 𝑥  −  𝑦 ) ) ) | 
						
							| 73 |  | oveq2 | ⊢ ( 𝐷  =  ( 𝑥  −  𝑦 )  →  ( 𝑥  −  𝐷 )  =  ( 𝑥  −  ( 𝑥  −  𝑦 ) ) ) | 
						
							| 74 | 73 | eqeq2d | ⊢ ( 𝐷  =  ( 𝑥  −  𝑦 )  →  ( 𝑦  =  ( 𝑥  −  𝐷 )  ↔  𝑦  =  ( 𝑥  −  ( 𝑥  −  𝑦 ) ) ) ) | 
						
							| 75 | 72 74 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  ( 𝐷  =  ( 𝑥  −  𝑦 )  →  𝑦  =  ( 𝑥  −  𝐷 ) ) ) | 
						
							| 76 | 75 | necon3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  ( 𝑦  ≠  ( 𝑥  −  𝐷 )  →  𝐷  ≠  ( 𝑥  −  𝑦 ) ) ) | 
						
							| 77 | 76 | impr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  ( 𝑦  ∈  ( 0 ... 𝑥 )  ∧  𝑦  ≠  ( 𝑥  −  𝐷 ) ) )  →  𝐷  ≠  ( 𝑥  −  𝑦 ) ) | 
						
							| 78 | 66 77 | sylan2b | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( ( 0 ... 𝑥 )  ∖  { ( 𝑥  −  𝐷 ) } ) )  →  𝐷  ≠  ( 𝑥  −  𝑦 ) ) | 
						
							| 79 | 1 2 3 4 5 6 7 60 61 62 65 78 | coe1tmfv2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( ( 0 ... 𝑥 )  ∖  { ( 𝑥  −  𝐷 ) } ) )  →  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) )  =   0  ) | 
						
							| 80 | 79 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( ( 0 ... 𝑥 )  ∖  { ( 𝑥  −  𝐷 ) } ) )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×   0  ) ) | 
						
							| 81 | 2 10 1 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ∈  𝐾 )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×   0  )  =   0  ) | 
						
							| 82 | 42 49 81 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×   0  )  =   0  ) | 
						
							| 83 | 63 82 | sylan2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( ( 0 ... 𝑥 )  ∖  { ( 𝑥  −  𝐷 ) } ) )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×   0  )  =   0  ) | 
						
							| 84 | 80 83 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  ∧  𝑦  ∈  ( ( 0 ... 𝑥 )  ∖  { ( 𝑥  −  𝐷 ) } ) )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) )  =   0  ) | 
						
							| 85 | 84 25 | suppss2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) )  supp   0  )  ⊆  { ( 𝑥  −  𝐷 ) } ) | 
						
							| 86 | 2 1 23 25 41 59 85 | gsumpt | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) )  =  ( ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) ‘ ( 𝑥  −  𝐷 ) ) ) | 
						
							| 87 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑥  −  𝐷 )  →  ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  =  ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) ) ) | 
						
							| 88 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝑥  −  𝐷 )  →  ( 𝑥  −  𝑦 )  =  ( 𝑥  −  ( 𝑥  −  𝐷 ) ) ) | 
						
							| 89 | 88 | fveq2d | ⊢ ( 𝑦  =  ( 𝑥  −  𝐷 )  →  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) )  =  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  ( 𝑥  −  𝐷 ) ) ) ) | 
						
							| 90 | 87 89 | oveq12d | ⊢ ( 𝑦  =  ( 𝑥  −  𝐷 )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  ( 𝑥  −  𝐷 ) ) ) ) ) | 
						
							| 91 |  | eqid | ⊢ ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) )  =  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) | 
						
							| 92 |  | ovex | ⊢ ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  ( 𝑥  −  𝐷 ) ) ) )  ∈  V | 
						
							| 93 | 90 91 92 | fvmpt | ⊢ ( ( 𝑥  −  𝐷 )  ∈  ( 0 ... 𝑥 )  →  ( ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) ‘ ( 𝑥  −  𝐷 ) )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  ( 𝑥  −  𝐷 ) ) ) ) ) | 
						
							| 94 | 41 93 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) ‘ ( 𝑥  −  𝐷 ) )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  ( 𝑥  −  𝐷 ) ) ) ) ) | 
						
							| 95 | 28 | nn0cnd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 96 | 27 | nn0cnd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 97 | 95 96 | nncand | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( 𝑥  −  ( 𝑥  −  𝐷 ) )  =  𝐷 ) | 
						
							| 98 | 97 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  ( 𝑥  −  𝐷 ) ) )  =  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ 𝐷 ) ) | 
						
							| 99 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  𝐶  ∈  𝐾 ) | 
						
							| 100 | 1 2 3 4 5 6 7 | coe1tmfv1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐶  ∈  𝐾  ∧  𝐷  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ 𝐷 )  =  𝐶 ) | 
						
							| 101 | 21 99 27 100 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ 𝐷 )  =  𝐶 ) | 
						
							| 102 | 98 101 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  ( 𝑥  −  𝐷 ) ) )  =  𝐶 ) | 
						
							| 103 | 102 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  ( 𝑥  −  𝐷 ) ) ) )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ) | 
						
							| 104 | 86 94 103 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℕ0  ∧  𝐷  ≤  𝑥 ) )  →  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ) | 
						
							| 105 | 104 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝐷  ≤  𝑥 )  →  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ) | 
						
							| 106 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 107 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  𝐶  ∈  𝐾 ) | 
						
							| 108 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  𝐷  ∈  ℕ0 ) | 
						
							| 109 | 54 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  ( 𝑥  −  𝑦 )  ∈  ℕ0 ) | 
						
							| 110 | 54 | nn0red | ⊢ ( 𝑦  ∈  ( 0 ... 𝑥 )  →  ( 𝑥  −  𝑦 )  ∈  ℝ ) | 
						
							| 111 | 110 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  ( 𝑥  −  𝑦 )  ∈  ℝ ) | 
						
							| 112 | 33 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 113 | 35 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  𝐷  ∈  ℝ ) | 
						
							| 114 | 47 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  𝑦  ∈  ℕ0 ) | 
						
							| 115 | 114 | nn0ge0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  0  ≤  𝑦 ) | 
						
							| 116 | 47 | nn0red | ⊢ ( 𝑦  ∈  ( 0 ... 𝑥 )  →  𝑦  ∈  ℝ ) | 
						
							| 117 | 116 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 118 | 112 117 | subge02d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  ( 0  ≤  𝑦  ↔  ( 𝑥  −  𝑦 )  ≤  𝑥 ) ) | 
						
							| 119 | 115 118 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  ( 𝑥  −  𝑦 )  ≤  𝑥 ) | 
						
							| 120 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  ¬  𝐷  ≤  𝑥 ) | 
						
							| 121 | 112 113 | ltnled | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  ( 𝑥  <  𝐷  ↔  ¬  𝐷  ≤  𝑥 ) ) | 
						
							| 122 | 120 121 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  𝑥  <  𝐷 ) | 
						
							| 123 | 111 112 113 119 122 | lelttrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  ( 𝑥  −  𝑦 )  <  𝐷 ) | 
						
							| 124 | 111 123 | gtned | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  𝐷  ≠  ( 𝑥  −  𝑦 ) ) | 
						
							| 125 | 1 2 3 4 5 6 7 106 107 108 109 124 | coe1tmfv2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) )  =   0  ) | 
						
							| 126 | 125 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×   0  ) ) | 
						
							| 127 | 45 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ 𝐾 ) | 
						
							| 128 | 127 114 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ∈  𝐾 ) | 
						
							| 129 | 106 128 81 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×   0  )  =   0  ) | 
						
							| 130 | 126 129 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ( ¬  𝐷  ≤  𝑥  ∧  𝑦  ∈  ( 0 ... 𝑥 ) ) )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) )  =   0  ) | 
						
							| 131 | 130 | anassrs | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ¬  𝐷  ≤  𝑥 )  ∧  𝑦  ∈  ( 0 ... 𝑥 ) )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) )  =   0  ) | 
						
							| 132 | 131 | mpteq2dva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ¬  𝐷  ≤  𝑥 )  →  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) )  =  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦   0  ) ) | 
						
							| 133 | 132 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ¬  𝐷  ≤  𝑥 )  →  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦   0  ) ) ) | 
						
							| 134 | 12 22 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Mnd ) | 
						
							| 135 | 1 | gsumz | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 0 ... 𝑥 )  ∈  V )  →  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦   0  ) )  =   0  ) | 
						
							| 136 | 134 24 135 | sylancl | ⊢ ( 𝜑  →  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦   0  ) )  =   0  ) | 
						
							| 137 | 136 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ¬  𝐷  ≤  𝑥 )  →  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦   0  ) )  =   0  ) | 
						
							| 138 | 133 137 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  ¬  𝐷  ≤  𝑥 )  →  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) )  =   0  ) | 
						
							| 139 | 19 20 105 138 | ifbothda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) )  =  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) | 
						
							| 140 | 139 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℕ0  ↦  ( 𝑅  Σg  ( 𝑦  ∈  ( 0 ... 𝑥 )  ↦  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 )  ×  ( ( coe1 ‘ ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ‘ ( 𝑥  −  𝑦 ) ) ) ) ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) ) | 
						
							| 141 | 18 140 | eqtrd | ⊢ ( 𝜑  →  ( coe1 ‘ ( 𝐴  ∙  ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) ) |