| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1tm.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 2 |  | coe1tm.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | coe1tm.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | coe1tm.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 5 |  | coe1tm.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 6 |  | coe1tm.n | ⊢ 𝑁  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 7 |  | coe1tm.e | ⊢  ↑   =  ( .g ‘ 𝑁 ) | 
						
							| 8 |  | coe1tmmul.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 9 |  | coe1tmmul.t | ⊢  ∙   =  ( .r ‘ 𝑃 ) | 
						
							| 10 |  | coe1tmmul.u | ⊢  ×   =  ( .r ‘ 𝑅 ) | 
						
							| 11 |  | coe1tmmul.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 12 |  | coe1tmmul.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 13 |  | coe1tmmul.c | ⊢ ( 𝜑  →  𝐶  ∈  𝐾 ) | 
						
							| 14 |  | coe1tmmul.d | ⊢ ( 𝜑  →  𝐷  ∈  ℕ0 ) | 
						
							| 15 |  | coe1tmmul2fv.y | ⊢ ( 𝜑  →  𝑌  ∈  ℕ0 ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | coe1tmmul2 | ⊢ ( 𝜑  →  ( coe1 ‘ ( 𝐴  ∙  ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) ) | 
						
							| 17 | 16 | fveq1d | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 𝐴  ∙  ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ) ‘ ( 𝐷  +  𝑌 ) )  =  ( ( 𝑥  ∈  ℕ0  ↦  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) ‘ ( 𝐷  +  𝑌 ) ) ) | 
						
							| 18 | 14 15 | nn0addcld | ⊢ ( 𝜑  →  ( 𝐷  +  𝑌 )  ∈  ℕ0 ) | 
						
							| 19 |  | breq2 | ⊢ ( 𝑥  =  ( 𝐷  +  𝑌 )  →  ( 𝐷  ≤  𝑥  ↔  𝐷  ≤  ( 𝐷  +  𝑌 ) ) ) | 
						
							| 20 |  | fvoveq1 | ⊢ ( 𝑥  =  ( 𝐷  +  𝑌 )  →  ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  =  ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷  +  𝑌 )  −  𝐷 ) ) ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( 𝑥  =  ( 𝐷  +  𝑌 )  →  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷  +  𝑌 )  −  𝐷 ) )  ×  𝐶 ) ) | 
						
							| 22 | 19 21 | ifbieq1d | ⊢ ( 𝑥  =  ( 𝐷  +  𝑌 )  →  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  )  =  if ( 𝐷  ≤  ( 𝐷  +  𝑌 ) ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷  +  𝑌 )  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑥  ∈  ℕ0  ↦  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) | 
						
							| 24 |  | ovex | ⊢ ( ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷  +  𝑌 )  −  𝐷 ) )  ×  𝐶 )  ∈  V | 
						
							| 25 | 1 | fvexi | ⊢  0   ∈  V | 
						
							| 26 | 24 25 | ifex | ⊢ if ( 𝐷  ≤  ( 𝐷  +  𝑌 ) ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷  +  𝑌 )  −  𝐷 ) )  ×  𝐶 ) ,   0  )  ∈  V | 
						
							| 27 | 22 23 26 | fvmpt | ⊢ ( ( 𝐷  +  𝑌 )  ∈  ℕ0  →  ( ( 𝑥  ∈  ℕ0  ↦  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) ‘ ( 𝐷  +  𝑌 ) )  =  if ( 𝐷  ≤  ( 𝐷  +  𝑌 ) ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷  +  𝑌 )  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) | 
						
							| 28 | 18 27 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℕ0  ↦  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) ‘ ( 𝐷  +  𝑌 ) )  =  if ( 𝐷  ≤  ( 𝐷  +  𝑌 ) ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷  +  𝑌 )  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) | 
						
							| 29 | 14 | nn0red | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 30 |  | nn0addge1 | ⊢ ( ( 𝐷  ∈  ℝ  ∧  𝑌  ∈  ℕ0 )  →  𝐷  ≤  ( 𝐷  +  𝑌 ) ) | 
						
							| 31 | 29 15 30 | syl2anc | ⊢ ( 𝜑  →  𝐷  ≤  ( 𝐷  +  𝑌 ) ) | 
						
							| 32 | 31 | iftrued | ⊢ ( 𝜑  →  if ( 𝐷  ≤  ( 𝐷  +  𝑌 ) ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷  +  𝑌 )  −  𝐷 ) )  ×  𝐶 ) ,   0  )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷  +  𝑌 )  −  𝐷 ) )  ×  𝐶 ) ) | 
						
							| 33 | 14 | nn0cnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 34 | 15 | nn0cnd | ⊢ ( 𝜑  →  𝑌  ∈  ℂ ) | 
						
							| 35 | 33 34 | pncan2d | ⊢ ( 𝜑  →  ( ( 𝐷  +  𝑌 )  −  𝐷 )  =  𝑌 ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( 𝜑  →  ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷  +  𝑌 )  −  𝐷 ) )  =  ( ( coe1 ‘ 𝐴 ) ‘ 𝑌 ) ) | 
						
							| 37 | 36 | oveq1d | ⊢ ( 𝜑  →  ( ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷  +  𝑌 )  −  𝐷 ) )  ×  𝐶 )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑌 )  ×  𝐶 ) ) | 
						
							| 38 | 28 32 37 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℕ0  ↦  if ( 𝐷  ≤  𝑥 ,  ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥  −  𝐷 ) )  ×  𝐶 ) ,   0  ) ) ‘ ( 𝐷  +  𝑌 ) )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑌 )  ×  𝐶 ) ) | 
						
							| 39 | 17 38 | eqtrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 𝐴  ∙  ( 𝐶  ·  ( 𝐷  ↑  𝑋 ) ) ) ) ‘ ( 𝐷  +  𝑌 ) )  =  ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑌 )  ×  𝐶 ) ) |