| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plycjOLD.1 | ⊢ 𝑁  =  ( deg ‘ 𝐹 ) | 
						
							| 2 |  | plycjOLD.2 | ⊢ 𝐺  =  ( ( ∗  ∘  𝐹 )  ∘  ∗ ) | 
						
							| 3 |  | coecjOLD.3 | ⊢ 𝐴  =  ( coeff ‘ 𝐹 ) | 
						
							| 4 |  | cjcl | ⊢ ( 𝑥  ∈  ℂ  →  ( ∗ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑥  ∈  ℂ )  →  ( ∗ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 6 |  | plyssc | ⊢ ( Poly ‘ 𝑆 )  ⊆  ( Poly ‘ ℂ ) | 
						
							| 7 | 6 | sseli | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 8 | 1 2 5 7 | plycjOLD | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐺  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 9 |  | dgrcl | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 10 | 1 9 | eqeltrid | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 11 |  | cjf | ⊢ ∗ : ℂ ⟶ ℂ | 
						
							| 12 | 3 | coef3 | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 13 |  | fco | ⊢ ( ( ∗ : ℂ ⟶ ℂ  ∧  𝐴 : ℕ0 ⟶ ℂ )  →  ( ∗  ∘  𝐴 ) : ℕ0 ⟶ ℂ ) | 
						
							| 14 | 11 12 13 | sylancr | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( ∗  ∘  𝐴 ) : ℕ0 ⟶ ℂ ) | 
						
							| 15 |  | fvco3 | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( ( ∗  ∘  𝐴 ) ‘ 𝑘 )  =  ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 16 | 12 15 | sylan | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ∗  ∘  𝐴 ) ‘ 𝑘 )  =  ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 17 |  | cj0 | ⊢ ( ∗ ‘ 0 )  =  0 | 
						
							| 18 | 17 | eqcomi | ⊢ 0  =  ( ∗ ‘ 0 ) | 
						
							| 19 | 18 | a1i | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  0  =  ( ∗ ‘ 0 ) ) | 
						
							| 20 | 16 19 | eqeq12d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ∗  ∘  𝐴 ) ‘ 𝑘 )  =  0  ↔  ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) )  =  ( ∗ ‘ 0 ) ) ) | 
						
							| 21 | 12 | ffvelcdmda | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 22 |  | 0cnd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  0  ∈  ℂ ) | 
						
							| 23 |  | cj11 | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℂ  ∧  0  ∈  ℂ )  →  ( ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) )  =  ( ∗ ‘ 0 )  ↔  ( 𝐴 ‘ 𝑘 )  =  0 ) ) | 
						
							| 24 | 21 22 23 | syl2anc | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) )  =  ( ∗ ‘ 0 )  ↔  ( 𝐴 ‘ 𝑘 )  =  0 ) ) | 
						
							| 25 | 20 24 | bitrd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ∗  ∘  𝐴 ) ‘ 𝑘 )  =  0  ↔  ( 𝐴 ‘ 𝑘 )  =  0 ) ) | 
						
							| 26 | 25 | necon3bid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ∗  ∘  𝐴 ) ‘ 𝑘 )  ≠  0  ↔  ( 𝐴 ‘ 𝑘 )  ≠  0 ) ) | 
						
							| 27 | 3 1 | dgrub2 | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 28 |  | plyco0 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐴 : ℕ0 ⟶ ℂ )  →  ( ( 𝐴  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) ) | 
						
							| 29 | 10 12 28 | syl2anc | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( ( 𝐴  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) ) | 
						
							| 30 | 27 29 | mpbid | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ∀ 𝑘  ∈  ℕ0 ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) | 
						
							| 31 | 30 | r19.21bi | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) | 
						
							| 32 | 26 31 | sylbid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ∗  ∘  𝐴 ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) | 
						
							| 33 | 32 | ralrimiva | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ∀ 𝑘  ∈  ℕ0 ( ( ( ∗  ∘  𝐴 ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) | 
						
							| 34 |  | plyco0 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ∗  ∘  𝐴 ) : ℕ0 ⟶ ℂ )  →  ( ( ( ∗  ∘  𝐴 )  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( ( ∗  ∘  𝐴 ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) ) | 
						
							| 35 | 10 14 34 | syl2anc | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( ( ( ∗  ∘  𝐴 )  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( ( ∗  ∘  𝐴 ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) ) | 
						
							| 36 | 33 35 | mpbird | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( ( ∗  ∘  𝐴 )  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 37 | 1 2 3 | plycjlem | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( ∗  ∘  𝐴 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 38 | 8 10 14 36 37 | coeeq | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( coeff ‘ 𝐺 )  =  ( ∗  ∘  𝐴 ) ) |