| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyssc | ⊢ ( Poly ‘ 𝑆 )  ⊆  ( Poly ‘ ℂ ) | 
						
							| 2 | 1 | sseli | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 3 |  | elply2 | ⊢ ( 𝐹  ∈  ( Poly ‘ ℂ )  ↔  ( ℂ  ⊆  ℂ  ∧  ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ( ( ℂ  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 4 | 3 | simprbi | ⊢ ( 𝐹  ∈  ( Poly ‘ ℂ )  →  ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ( ( ℂ  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 5 |  | rexcom | ⊢ ( ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ( ( ℂ  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ↔  ∃ 𝑎  ∈  ( ( ℂ  ∪  { 0 } )  ↑m  ℕ0 ) ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 6 | 4 5 | sylib | ⊢ ( 𝐹  ∈  ( Poly ‘ ℂ )  →  ∃ 𝑎  ∈  ( ( ℂ  ∪  { 0 } )  ↑m  ℕ0 ) ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ∃ 𝑎  ∈  ( ( ℂ  ∪  { 0 } )  ↑m  ℕ0 ) ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 8 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 9 |  | snssi | ⊢ ( 0  ∈  ℂ  →  { 0 }  ⊆  ℂ ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ { 0 }  ⊆  ℂ | 
						
							| 11 |  | ssequn2 | ⊢ ( { 0 }  ⊆  ℂ  ↔  ( ℂ  ∪  { 0 } )  =  ℂ ) | 
						
							| 12 | 10 11 | mpbi | ⊢ ( ℂ  ∪  { 0 } )  =  ℂ | 
						
							| 13 | 12 | oveq1i | ⊢ ( ( ℂ  ∪  { 0 } )  ↑m  ℕ0 )  =  ( ℂ  ↑m  ℕ0 ) | 
						
							| 14 | 13 | rexeqi | ⊢ ( ∃ 𝑎  ∈  ( ( ℂ  ∪  { 0 } )  ↑m  ℕ0 ) ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ↔  ∃ 𝑎  ∈  ( ℂ  ↑m  ℕ0 ) ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 15 | 7 14 | sylib | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ∃ 𝑎  ∈  ( ℂ  ↑m  ℕ0 ) ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 16 |  | reeanv | ⊢ ( ∃ 𝑛  ∈  ℕ0 ∃ 𝑚  ∈  ℕ0 ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  ↔  ( ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ∃ 𝑚  ∈  ℕ0 ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 17 |  | simp1l | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 18 |  | simp1rl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝑎  ∈  ( ℂ  ↑m  ℕ0 ) ) | 
						
							| 19 |  | simp1rr | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) | 
						
							| 20 |  | simp2l | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 21 |  | simp2r | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 22 |  | simp3ll | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 } ) | 
						
							| 23 |  | simp3rl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 } ) | 
						
							| 24 |  | simp3lr | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧 ↑ 𝑘 )  =  ( 𝑤 ↑ 𝑘 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) ) ) | 
						
							| 27 | 26 | sumeq2sdv | ⊢ ( 𝑧  =  𝑤  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑎 ‘ 𝑘 )  =  ( 𝑎 ‘ 𝑗 ) ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑤 ↑ 𝑘 )  =  ( 𝑤 ↑ 𝑗 ) ) | 
						
							| 30 | 28 29 | oveq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) )  =  ( ( 𝑎 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) | 
						
							| 31 | 30 | cbvsumv | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) | 
						
							| 32 | 27 31 | eqtrdi | ⊢ ( 𝑧  =  𝑤  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) | 
						
							| 33 | 32 | cbvmptv | ⊢ ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑤  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) | 
						
							| 34 | 24 33 | eqtrdi | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝐹  =  ( 𝑤  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) ) | 
						
							| 35 |  | simp3rr | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 36 | 25 | oveq2d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) ) ) | 
						
							| 37 | 36 | sumeq2sdv | ⊢ ( 𝑧  =  𝑤  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑏 ‘ 𝑘 )  =  ( 𝑏 ‘ 𝑗 ) ) | 
						
							| 39 | 38 29 | oveq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) )  =  ( ( 𝑏 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) | 
						
							| 40 | 39 | cbvsumv | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) | 
						
							| 41 | 37 40 | eqtrdi | ⊢ ( 𝑧  =  𝑤  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) | 
						
							| 42 | 41 | cbvmptv | ⊢ ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑤  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) | 
						
							| 43 | 35 42 | eqtrdi | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝐹  =  ( 𝑤  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) ) | 
						
							| 44 | 17 18 19 20 21 22 23 34 43 | coeeulem | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝑎  =  𝑏 ) | 
						
							| 45 | 44 | 3expia | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 ) )  →  ( ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  →  𝑎  =  𝑏 ) ) | 
						
							| 46 | 45 | rexlimdvva | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  →  ( ∃ 𝑛  ∈  ℕ0 ∃ 𝑚  ∈  ℕ0 ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  →  𝑎  =  𝑏 ) ) | 
						
							| 47 | 16 46 | biimtrrid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑎  ∈  ( ℂ  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ) )  →  ( ( ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ∃ 𝑚  ∈  ℕ0 ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  →  𝑎  =  𝑏 ) ) | 
						
							| 48 | 47 | ralrimivva | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ∀ 𝑎  ∈  ( ℂ  ↑m  ℕ0 ) ∀ 𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ( ( ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ∃ 𝑚  ∈  ℕ0 ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  →  𝑎  =  𝑏 ) ) | 
						
							| 49 |  | imaeq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 50 | 49 | eqeq1d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ↔  ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 } ) ) | 
						
							| 51 |  | fveq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎 ‘ 𝑘 )  =  ( 𝑏 ‘ 𝑘 ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 53 | 52 | sumeq2sdv | ⊢ ( 𝑎  =  𝑏  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 54 | 53 | mpteq2dv | ⊢ ( 𝑎  =  𝑏  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 55 | 54 | eqeq2d | ⊢ ( 𝑎  =  𝑏  →  ( 𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ↔  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 56 | 50 55 | anbi12d | ⊢ ( 𝑎  =  𝑏  →  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ↔  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 57 | 56 | rexbidv | ⊢ ( 𝑎  =  𝑏  →  ( ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ↔  ∃ 𝑛  ∈  ℕ0 ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 58 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑚  →  ( ℤ≥ ‘ ( 𝑛  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 59 | 58 | imaeq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 60 | 59 | eqeq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ↔  ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 } ) ) | 
						
							| 61 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝑚 ) ) | 
						
							| 62 | 61 | sumeq1d | ⊢ ( 𝑛  =  𝑚  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 63 | 62 | mpteq2dv | ⊢ ( 𝑛  =  𝑚  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 64 | 63 | eqeq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ↔  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 65 | 60 64 | anbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ↔  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 66 | 65 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ℕ0 ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ↔  ∃ 𝑚  ∈  ℕ0 ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 67 | 57 66 | bitrdi | ⊢ ( 𝑎  =  𝑏  →  ( ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ↔  ∃ 𝑚  ∈  ℕ0 ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 68 | 67 | reu4 | ⊢ ( ∃! 𝑎  ∈  ( ℂ  ↑m  ℕ0 ) ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ↔  ( ∃ 𝑎  ∈  ( ℂ  ↑m  ℕ0 ) ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ∀ 𝑎  ∈  ( ℂ  ↑m  ℕ0 ) ∀ 𝑏  ∈  ( ℂ  ↑m  ℕ0 ) ( ( ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ∃ 𝑚  ∈  ℕ0 ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  →  𝑎  =  𝑏 ) ) ) | 
						
							| 69 | 15 48 68 | sylanbrc | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ∃! 𝑎  ∈  ( ℂ  ↑m  ℕ0 ) ∃ 𝑛  ∈  ℕ0 ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) |