| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coeeu.1 | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 2 |  | coeeu.2 | ⊢ ( 𝜑  →  𝐴  ∈  ( ℂ  ↑m  ℕ0 ) ) | 
						
							| 3 |  | coeeu.3 | ⊢ ( 𝜑  →  𝐵  ∈  ( ℂ  ↑m  ℕ0 ) ) | 
						
							| 4 |  | coeeu.4 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | coeeu.5 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | coeeu.6 | ⊢ ( 𝜑  →  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  { 0 } ) | 
						
							| 7 |  | coeeu.7 | ⊢ ( 𝜑  →  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 8 |  | coeeu.8 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 9 |  | coeeu.9 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 10 |  | ssidd | ⊢ ( 𝜑  →  ℂ  ⊆  ℂ ) | 
						
							| 11 | 4 5 | nn0addcld | ⊢ ( 𝜑  →  ( 𝑀  +  𝑁 )  ∈  ℕ0 ) | 
						
							| 12 |  | subcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  −  𝑦 )  ∈  ℂ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( 𝑥  −  𝑦 )  ∈  ℂ ) | 
						
							| 14 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 15 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 16 | 14 15 | elmap | ⊢ ( 𝐴  ∈  ( ℂ  ↑m  ℕ0 )  ↔  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 17 | 2 16 | sylib | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 18 | 14 15 | elmap | ⊢ ( 𝐵  ∈  ( ℂ  ↑m  ℕ0 )  ↔  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 19 | 3 18 | sylib | ⊢ ( 𝜑  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 20 | 15 | a1i | ⊢ ( 𝜑  →  ℕ0  ∈  V ) | 
						
							| 21 |  | inidm | ⊢ ( ℕ0  ∩  ℕ0 )  =  ℕ0 | 
						
							| 22 | 13 17 19 20 20 21 | off | ⊢ ( 𝜑  →  ( 𝐴  ∘f   −  𝐵 ) : ℕ0 ⟶ ℂ ) | 
						
							| 23 | 14 15 | elmap | ⊢ ( ( 𝐴  ∘f   −  𝐵 )  ∈  ( ℂ  ↑m  ℕ0 )  ↔  ( 𝐴  ∘f   −  𝐵 ) : ℕ0 ⟶ ℂ ) | 
						
							| 24 | 22 23 | sylibr | ⊢ ( 𝜑  →  ( 𝐴  ∘f   −  𝐵 )  ∈  ( ℂ  ↑m  ℕ0 ) ) | 
						
							| 25 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 26 |  | snssi | ⊢ ( 0  ∈  ℂ  →  { 0 }  ⊆  ℂ ) | 
						
							| 27 | 25 26 | ax-mp | ⊢ { 0 }  ⊆  ℂ | 
						
							| 28 |  | ssequn2 | ⊢ ( { 0 }  ⊆  ℂ  ↔  ( ℂ  ∪  { 0 } )  =  ℂ ) | 
						
							| 29 | 27 28 | mpbi | ⊢ ( ℂ  ∪  { 0 } )  =  ℂ | 
						
							| 30 | 29 | oveq1i | ⊢ ( ( ℂ  ∪  { 0 } )  ↑m  ℕ0 )  =  ( ℂ  ↑m  ℕ0 ) | 
						
							| 31 | 24 30 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝐴  ∘f   −  𝐵 )  ∈  ( ( ℂ  ∪  { 0 } )  ↑m  ℕ0 ) ) | 
						
							| 32 | 11 | nn0red | ⊢ ( 𝜑  →  ( 𝑀  +  𝑁 )  ∈  ℝ ) | 
						
							| 33 |  | nn0re | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ ) | 
						
							| 34 |  | ltnle | ⊢ ( ( ( 𝑀  +  𝑁 )  ∈  ℝ  ∧  𝑘  ∈  ℝ )  →  ( ( 𝑀  +  𝑁 )  <  𝑘  ↔  ¬  𝑘  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 35 | 32 33 34 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑀  +  𝑁 )  <  𝑘  ↔  ¬  𝑘  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 36 | 17 | ffnd | ⊢ ( 𝜑  →  𝐴  Fn  ℕ0 ) | 
						
							| 37 | 19 | ffnd | ⊢ ( 𝜑  →  𝐵  Fn  ℕ0 ) | 
						
							| 38 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 39 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 40 | 36 37 20 20 21 38 39 | ofval | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 41 | 40 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 42 | 4 | nn0red | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 44 | 32 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( 𝑀  +  𝑁 )  ∈  ℝ ) | 
						
							| 45 | 33 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℝ ) | 
						
							| 46 | 45 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 47 | 4 | nn0cnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 48 | 5 | nn0cnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 49 | 47 48 | addcomd | ⊢ ( 𝜑  →  ( 𝑀  +  𝑁 )  =  ( 𝑁  +  𝑀 ) ) | 
						
							| 50 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 51 | 5 50 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 52 | 4 | nn0zd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 53 |  | eluzadd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  ∧  𝑀  ∈  ℤ )  →  ( 𝑁  +  𝑀 )  ∈  ( ℤ≥ ‘ ( 0  +  𝑀 ) ) ) | 
						
							| 54 | 51 52 53 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  +  𝑀 )  ∈  ( ℤ≥ ‘ ( 0  +  𝑀 ) ) ) | 
						
							| 55 | 49 54 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( 0  +  𝑀 ) ) ) | 
						
							| 56 | 47 | addlidd | ⊢ ( 𝜑  →  ( 0  +  𝑀 )  =  𝑀 ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 0  +  𝑀 ) )  =  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 58 | 55 57 | eleqtrd | ⊢ ( 𝜑  →  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 59 |  | eluzle | ⊢ ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( 𝜑  →  𝑀  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  𝑀  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 62 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( 𝑀  +  𝑁 )  <  𝑘 ) | 
						
							| 63 | 43 44 46 61 62 | lelttrd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  𝑀  <  𝑘 ) | 
						
							| 64 | 43 46 | ltnled | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( 𝑀  <  𝑘  ↔  ¬  𝑘  ≤  𝑀 ) ) | 
						
							| 65 | 63 64 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ¬  𝑘  ≤  𝑀 ) | 
						
							| 66 |  | plyco0 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐴 : ℕ0 ⟶ ℂ )  →  ( ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑀 ) ) ) | 
						
							| 67 | 4 17 66 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑀 ) ) ) | 
						
							| 68 | 6 67 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ0 ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑀 ) ) | 
						
							| 69 | 68 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑀 ) ) | 
						
							| 70 | 69 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑀 ) ) | 
						
							| 71 | 70 | necon1bd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( ¬  𝑘  ≤  𝑀  →  ( 𝐴 ‘ 𝑘 )  =  0 ) ) | 
						
							| 72 | 65 71 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( 𝐴 ‘ 𝑘 )  =  0 ) | 
						
							| 73 | 5 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 75 | 4 50 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 76 | 5 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 77 |  | eluzadd | ⊢ ( ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( 0  +  𝑁 ) ) ) | 
						
							| 78 | 75 76 77 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( 0  +  𝑁 ) ) ) | 
						
							| 79 | 48 | addlidd | ⊢ ( 𝜑  →  ( 0  +  𝑁 )  =  𝑁 ) | 
						
							| 80 | 79 | fveq2d | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 0  +  𝑁 ) )  =  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 81 | 78 80 | eleqtrd | ⊢ ( 𝜑  →  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 82 |  | eluzle | ⊢ ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝑁  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 83 | 81 82 | syl | ⊢ ( 𝜑  →  𝑁  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  𝑁  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 85 | 74 44 46 84 62 | lelttrd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  𝑁  <  𝑘 ) | 
						
							| 86 | 74 46 | ltnled | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( 𝑁  <  𝑘  ↔  ¬  𝑘  ≤  𝑁 ) ) | 
						
							| 87 | 85 86 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ¬  𝑘  ≤  𝑁 ) | 
						
							| 88 |  | plyco0 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐵 : ℕ0 ⟶ ℂ )  →  ( ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( 𝐵 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) ) | 
						
							| 89 | 5 19 88 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( 𝐵 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) ) | 
						
							| 90 | 7 89 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ0 ( ( 𝐵 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) | 
						
							| 91 | 90 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐵 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) | 
						
							| 92 | 91 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( ( 𝐵 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) | 
						
							| 93 | 92 | necon1bd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( ¬  𝑘  ≤  𝑁  →  ( 𝐵 ‘ 𝑘 )  =  0 ) ) | 
						
							| 94 | 87 93 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( 𝐵 ‘ 𝑘 )  =  0 ) | 
						
							| 95 | 72 94 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑘 ) )  =  ( 0  −  0 ) ) | 
						
							| 96 |  | 0m0e0 | ⊢ ( 0  −  0 )  =  0 | 
						
							| 97 | 95 96 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑘 ) )  =  0 ) | 
						
							| 98 | 41 97 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ0  ∧  ( 𝑀  +  𝑁 )  <  𝑘 ) )  →  ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  =  0 ) | 
						
							| 99 | 98 | expr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑀  +  𝑁 )  <  𝑘  →  ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  =  0 ) ) | 
						
							| 100 | 35 99 | sylbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ¬  𝑘  ≤  ( 𝑀  +  𝑁 )  →  ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  =  0 ) ) | 
						
							| 101 | 100 | necon1ad | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 102 | 101 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ0 ( ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 103 |  | plyco0 | ⊢ ( ( ( 𝑀  +  𝑁 )  ∈  ℕ0  ∧  ( 𝐴  ∘f   −  𝐵 ) : ℕ0 ⟶ ℂ )  →  ( ( ( 𝐴  ∘f   −  𝐵 )  “  ( ℤ≥ ‘ ( ( 𝑀  +  𝑁 )  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  ( 𝑀  +  𝑁 ) ) ) ) | 
						
							| 104 | 11 22 103 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐴  ∘f   −  𝐵 )  “  ( ℤ≥ ‘ ( ( 𝑀  +  𝑁 )  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  ( 𝑀  +  𝑁 ) ) ) ) | 
						
							| 105 | 102 104 | mpbird | ⊢ ( 𝜑  →  ( ( 𝐴  ∘f   −  𝐵 )  “  ( ℤ≥ ‘ ( ( 𝑀  +  𝑁 )  +  1 ) ) )  =  { 0 } ) | 
						
							| 106 |  | df-0p | ⊢ 0𝑝  =  ( ℂ  ×  { 0 } ) | 
						
							| 107 |  | fconstmpt | ⊢ ( ℂ  ×  { 0 } )  =  ( 𝑧  ∈  ℂ  ↦  0 ) | 
						
							| 108 | 106 107 | eqtri | ⊢ 0𝑝  =  ( 𝑧  ∈  ℂ  ↦  0 ) | 
						
							| 109 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 110 | 40 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 111 | 110 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑘 ) )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 112 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 113 | 112 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 114 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 115 | 114 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 116 |  | expcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 117 | 116 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 118 | 113 115 117 | subdird | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑘 ) )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  −  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 119 | 111 118 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  −  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 120 | 109 119 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  −  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 121 | 120 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  −  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 122 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 0 ... ( 𝑀  +  𝑁 ) )  ∈  Fin ) | 
						
							| 123 | 113 117 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 124 | 109 123 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 125 | 115 117 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 126 | 109 125 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 127 | 122 124 126 | fsumsub | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  −  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  −  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 128 | 122 124 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 129 | 8 9 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 130 | 129 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑧 )  =  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑧 ) ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑧 )  =  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑧 ) ) | 
						
							| 132 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  𝑧  ∈  ℂ ) | 
						
							| 133 |  | sumex | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  V | 
						
							| 134 |  | eqid | ⊢ ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 135 | 134 | fvmpt2 | ⊢ ( ( 𝑧  ∈  ℂ  ∧  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  V )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑧 )  =  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 136 | 132 133 135 | sylancl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑧 )  =  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 137 |  | fzss2 | ⊢ ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 0 ... 𝑀 )  ⊆  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 138 | 58 137 | syl | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ⊆  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 139 | 138 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 0 ... 𝑀 )  ⊆  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 140 | 139 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 141 | 140 124 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 142 |  | eldifn | ⊢ ( 𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) )  →  ¬  𝑘  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 143 | 142 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ¬  𝑘  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 144 |  | eldifi | ⊢ ( 𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 145 | 144 109 | syl | ⊢ ( 𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 146 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 147 | 146 50 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 148 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑀  ∈  ℤ ) | 
						
							| 149 |  | elfz5 | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 0 )  ∧  𝑀  ∈  ℤ )  →  ( 𝑘  ∈  ( 0 ... 𝑀 )  ↔  𝑘  ≤  𝑀 ) ) | 
						
							| 150 | 147 148 149 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ∈  ( 0 ... 𝑀 )  ↔  𝑘  ≤  𝑀 ) ) | 
						
							| 151 | 69 150 | sylibrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 152 | 151 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 153 | 152 | necon1bd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ¬  𝑘  ∈  ( 0 ... 𝑀 )  →  ( 𝐴 ‘ 𝑘 )  =  0 ) ) | 
						
							| 154 | 145 153 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( ¬  𝑘  ∈  ( 0 ... 𝑀 )  →  ( 𝐴 ‘ 𝑘 )  =  0 ) ) | 
						
							| 155 | 143 154 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝐴 ‘ 𝑘 )  =  0 ) | 
						
							| 156 | 155 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( 0  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 157 | 132 145 116 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 158 | 157 | mul02d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 0  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 159 | 156 158 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 160 | 139 141 159 122 | fsumss | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 161 | 136 160 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑧 )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 162 |  | sumex | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  V | 
						
							| 163 |  | eqid | ⊢ ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 164 | 163 | fvmpt2 | ⊢ ( ( 𝑧  ∈  ℂ  ∧  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  V )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑧 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 165 | 132 162 164 | sylancl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑧 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 166 |  | fzss2 | ⊢ ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( 0 ... 𝑁 )  ⊆  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 167 | 81 166 | syl | ⊢ ( 𝜑  →  ( 0 ... 𝑁 )  ⊆  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 168 | 167 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 0 ... 𝑁 )  ⊆  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 169 | 168 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 170 | 169 126 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 171 |  | eldifn | ⊢ ( 𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑁 ) )  →  ¬  𝑘  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 172 | 171 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ¬  𝑘  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 173 |  | eldifi | ⊢ ( 𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 174 | 173 109 | syl | ⊢ ( 𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 175 | 76 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑁  ∈  ℤ ) | 
						
							| 176 |  | elfz5 | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 0 )  ∧  𝑁  ∈  ℤ )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  ↔  𝑘  ≤  𝑁 ) ) | 
						
							| 177 | 147 175 176 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  ↔  𝑘  ≤  𝑁 ) ) | 
						
							| 178 | 91 177 | sylibrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐵 ‘ 𝑘 )  ≠  0  →  𝑘  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 179 | 178 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐵 ‘ 𝑘 )  ≠  0  →  𝑘  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 180 | 179 | necon1bd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ¬  𝑘  ∈  ( 0 ... 𝑁 )  →  ( 𝐵 ‘ 𝑘 )  =  0 ) ) | 
						
							| 181 | 174 180 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( ¬  𝑘  ∈  ( 0 ... 𝑁 )  →  ( 𝐵 ‘ 𝑘 )  =  0 ) ) | 
						
							| 182 | 172 181 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝐵 ‘ 𝑘 )  =  0 ) | 
						
							| 183 | 182 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( 0  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 184 | 132 174 116 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 185 | 184 | mul02d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 0  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 186 | 183 185 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 187 | 168 170 186 122 | fsumss | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 188 | 165 187 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑧 )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 189 | 131 161 188 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 190 | 128 189 | subeq0bd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  −  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  0 ) | 
						
							| 191 | 121 127 190 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  0  =  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 192 | 191 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  0 )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 193 | 108 192 | eqtrid | ⊢ ( 𝜑  →  0𝑝  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( ( 𝐴  ∘f   −  𝐵 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 194 | 10 11 31 105 193 | plyeq0 | ⊢ ( 𝜑  →  ( 𝐴  ∘f   −  𝐵 )  =  ( ℕ0  ×  { 0 } ) ) | 
						
							| 195 |  | ofsubeq0 | ⊢ ( ( ℕ0  ∈  V  ∧  𝐴 : ℕ0 ⟶ ℂ  ∧  𝐵 : ℕ0 ⟶ ℂ )  →  ( ( 𝐴  ∘f   −  𝐵 )  =  ( ℕ0  ×  { 0 } )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 196 | 15 17 19 195 | mp3an2i | ⊢ ( 𝜑  →  ( ( 𝐴  ∘f   −  𝐵 )  =  ( ℕ0  ×  { 0 } )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 197 | 194 196 | mpbid | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) |