Metamath Proof Explorer


Theorem coef2

Description: The domain and range of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypothesis dgrval.1 𝐴 = ( coeff ‘ 𝐹 )
Assertion coef2 ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → 𝐴 : ℕ0𝑆 )

Proof

Step Hyp Ref Expression
1 dgrval.1 𝐴 = ( coeff ‘ 𝐹 )
2 1 coef ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) )
3 2 adantr ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) )
4 simpr ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → 0 ∈ 𝑆 )
5 4 snssd ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → { 0 } ⊆ 𝑆 )
6 ssequn2 ( { 0 } ⊆ 𝑆 ↔ ( 𝑆 ∪ { 0 } ) = 𝑆 )
7 5 6 sylib ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → ( 𝑆 ∪ { 0 } ) = 𝑆 )
8 7 feq3d ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → ( 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ↔ 𝐴 : ℕ0𝑆 ) )
9 3 8 mpbid ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → 𝐴 : ℕ0𝑆 )