Step |
Hyp |
Ref |
Expression |
1 |
|
dgrub.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
2 |
|
dgrub.2 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
3 |
|
elply2 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) ) ) |
4 |
3
|
simprbi |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) ) |
5 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
6 |
|
simplrl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) ) → 𝑛 ∈ ℕ0 ) |
7 |
|
simplrr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) ) → 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
8 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) ) → ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ) |
9 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) ) → 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝑎 ‘ 𝑚 ) = ( 𝑎 ‘ 𝑘 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝑥 ↑ 𝑚 ) = ( 𝑥 ↑ 𝑘 ) ) |
12 |
10 11
|
oveq12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) = ( ( 𝑎 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) ) |
13 |
12
|
cbvsumv |
⊢ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ↑ 𝑘 ) = ( 𝑧 ↑ 𝑘 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑎 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) = ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
16 |
15
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑧 → Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
17 |
13 16
|
syl5eq |
⊢ ( 𝑥 = 𝑧 → Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
18 |
17
|
cbvmptv |
⊢ ( 𝑥 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
19 |
9 18
|
eqtrdi |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
20 |
1 2 5 6 7 8 19
|
coeidlem |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
21 |
20
|
ex |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
22 |
21
|
rexlimdvva |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑥 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
23 |
4 22
|
mpd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |