Step |
Hyp |
Ref |
Expression |
1 |
|
dgrub.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
2 |
|
dgrub.2 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
3 |
1 2
|
coeid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
4 |
3
|
fveq1d |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐹 ‘ 𝑋 ) = ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑋 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 ↑ 𝑘 ) = ( 𝑋 ↑ 𝑘 ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
7 |
6
|
sumeq2sdv |
⊢ ( 𝑧 = 𝑋 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
8 |
|
eqid |
⊢ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
9 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ∈ V |
10 |
7 8 9
|
fvmpt |
⊢ ( 𝑋 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
11 |
4 10
|
sylan9eq |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑋 ∈ ℂ ) → ( 𝐹 ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |