Step |
Hyp |
Ref |
Expression |
1 |
|
dgrub.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
2 |
|
dgrub.2 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
3 |
1 2
|
coeid2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑋 ∈ ℂ ) → ( 𝐹 ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) → ( 𝐹 ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
5 |
|
fzss2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ... 𝑁 ) ⊆ ( 0 ... 𝑀 ) ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) → ( 0 ... 𝑁 ) ⊆ ( 0 ... 𝑀 ) ) |
7 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
8 |
1
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
10 |
9
|
ffvelrnda |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
11 |
|
expcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑘 ) ∈ ℂ ) |
12 |
11
|
3ad2antl3 |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑘 ) ∈ ℂ ) |
13 |
10 12
|
mulcld |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ∈ ℂ ) |
14 |
7 13
|
sylan2 |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ∈ ℂ ) |
15 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) → ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ) |
17 |
|
simpl1 |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
18 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
19 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
20 |
18 19
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
22 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
23 |
21 22
|
eleqtrrdi |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → 𝑘 ∈ ℕ0 ) |
24 |
1 2
|
dgrub |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ≤ 𝑁 ) |
25 |
24
|
3expia |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
26 |
17 23 25
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
27 |
|
simpl2 |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
28 |
|
eluzel2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ∈ ℤ ) |
29 |
27 28
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → 𝑁 ∈ ℤ ) |
30 |
|
elfz5 |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↔ 𝑘 ≤ 𝑁 ) ) |
31 |
21 29 30
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↔ 𝑘 ≤ 𝑁 ) ) |
32 |
26 31
|
sylibrd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ∈ ( 0 ... 𝑁 ) ) ) |
33 |
32
|
necon1bd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( ¬ 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
34 |
16 33
|
mpd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝐴 ‘ 𝑘 ) = 0 ) |
35 |
34
|
oveq1d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( 0 · ( 𝑋 ↑ 𝑘 ) ) ) |
36 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) → 𝑘 ∈ ℕ0 ) |
37 |
18 36
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
38 |
37 12
|
sylan2 |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝑋 ↑ 𝑘 ) ∈ ℂ ) |
39 |
38
|
mul02d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( 0 · ( 𝑋 ↑ 𝑘 ) ) = 0 ) |
40 |
35 39
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = 0 ) |
41 |
|
fzfid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) → ( 0 ... 𝑀 ) ∈ Fin ) |
42 |
6 14 40 41
|
fsumss |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
43 |
4 42
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑋 ∈ ℂ ) → ( 𝐹 ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |