Step |
Hyp |
Ref |
Expression |
1 |
|
dgrub.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
2 |
|
dgrub.2 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
3 |
|
coeid.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
4 |
|
coeid.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
5 |
|
coeid.5 |
⊢ ( 𝜑 → 𝐵 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
6 |
|
coeid.6 |
⊢ ( 𝜑 → ( 𝐵 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) |
7 |
|
coeid.7 |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
8 |
|
plybss |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑆 ⊆ ℂ ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
10 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
11 |
10
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ℂ ) |
12 |
9 11
|
unssd |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
13 |
|
cnex |
⊢ ℂ ∈ V |
14 |
|
ssexg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ⊆ ℂ ∧ ℂ ∈ V ) → ( 𝑆 ∪ { 0 } ) ∈ V ) |
15 |
12 13 14
|
sylancl |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ∈ V ) |
16 |
|
nn0ex |
⊢ ℕ0 ∈ V |
17 |
|
elmapg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ∈ V ∧ ℕ0 ∈ V ) → ( 𝐵 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐵 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
18 |
15 16 17
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐵 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
19 |
5 18
|
mpbid |
⊢ ( 𝜑 → 𝐵 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
20 |
19 12
|
fssd |
⊢ ( 𝜑 → 𝐵 : ℕ0 ⟶ ℂ ) |
21 |
3 4 20 6 7
|
coeeq |
⊢ ( 𝜑 → ( coeff ‘ 𝐹 ) = 𝐵 ) |
22 |
1 21
|
eqtr2id |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝐵 = 𝐴 ) |
24 |
|
fveq1 |
⊢ ( 𝐵 = 𝐴 → ( 𝐵 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
25 |
24
|
oveq1d |
⊢ ( 𝐵 = 𝐴 → ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
26 |
25
|
sumeq2sdv |
⊢ ( 𝐵 = 𝐴 → Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
27 |
23 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
28 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
29 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
30 |
2 29
|
eqeltrid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑁 ∈ ℕ0 ) |
31 |
28 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
32 |
31
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑁 ∈ ℤ ) |
33 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑀 ∈ ℕ0 ) |
34 |
33
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑀 ∈ ℤ ) |
35 |
23
|
imaeq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐵 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
36 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐵 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) |
37 |
35 36
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) |
38 |
1 2
|
dgrlb |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → 𝑁 ≤ 𝑀 ) |
39 |
28 33 37 38
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑁 ≤ 𝑀 ) |
40 |
|
eluz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀 ) ) |
41 |
32 34 39 40
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
42 |
|
fzss2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ... 𝑁 ) ⊆ ( 0 ... 𝑀 ) ) |
43 |
41 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0 ... 𝑁 ) ⊆ ( 0 ... 𝑀 ) ) |
44 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
45 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
46 |
45 3
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
47 |
1
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ ℂ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
48 |
46 47
|
syl |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
50 |
49
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
51 |
|
expcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
52 |
51
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
53 |
50 52
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
54 |
44 53
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
55 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) → ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ) |
57 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
58 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) → 𝑘 ∈ ℕ0 ) |
59 |
57 58
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
60 |
1 2
|
dgrub |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ≤ 𝑁 ) |
61 |
60
|
3expia |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
62 |
28 59 61
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
63 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
64 |
57 63
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
65 |
|
elfz5 |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↔ 𝑘 ≤ 𝑁 ) ) |
66 |
64 32 65
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↔ 𝑘 ≤ 𝑁 ) ) |
67 |
62 66
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ∈ ( 0 ... 𝑁 ) ) ) |
68 |
67
|
necon1bd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( ¬ 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
69 |
56 68
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝐴 ‘ 𝑘 ) = 0 ) |
70 |
69
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( 0 · ( 𝑧 ↑ 𝑘 ) ) ) |
71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
72 |
71 59 51
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
73 |
72
|
mul02d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( 0 · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
74 |
70 73
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
75 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0 ... 𝑀 ) ∈ Fin ) |
76 |
43 54 74 75
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
77 |
27 76
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
78 |
77
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
79 |
7 78
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |