Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
2 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
3 |
|
mptresid |
⊢ ( I ↾ ℂ ) = ( 𝑧 ∈ ℂ ↦ 𝑧 ) |
4 |
|
df-idp |
⊢ Xp = ( I ↾ ℂ ) |
5 |
|
exp1 |
⊢ ( 𝑧 ∈ ℂ → ( 𝑧 ↑ 1 ) = 𝑧 ) |
6 |
5
|
oveq2d |
⊢ ( 𝑧 ∈ ℂ → ( 1 · ( 𝑧 ↑ 1 ) ) = ( 1 · 𝑧 ) ) |
7 |
|
mulid2 |
⊢ ( 𝑧 ∈ ℂ → ( 1 · 𝑧 ) = 𝑧 ) |
8 |
6 7
|
eqtrd |
⊢ ( 𝑧 ∈ ℂ → ( 1 · ( 𝑧 ↑ 1 ) ) = 𝑧 ) |
9 |
8
|
mpteq2ia |
⊢ ( 𝑧 ∈ ℂ ↦ ( 1 · ( 𝑧 ↑ 1 ) ) ) = ( 𝑧 ∈ ℂ ↦ 𝑧 ) |
10 |
3 4 9
|
3eqtr4i |
⊢ Xp = ( 𝑧 ∈ ℂ ↦ ( 1 · ( 𝑧 ↑ 1 ) ) ) |
11 |
10
|
coe1term |
⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ) → ( ( coeff ‘ Xp ) ‘ 𝐴 ) = if ( 𝐴 = 1 , 1 , 0 ) ) |
12 |
1 2 11
|
mp3an12 |
⊢ ( 𝐴 ∈ ℕ0 → ( ( coeff ‘ Xp ) ‘ 𝐴 ) = if ( 𝐴 = 1 , 1 , 0 ) ) |