Step |
Hyp |
Ref |
Expression |
1 |
|
coefv0.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
2 |
|
coeadd.2 |
⊢ 𝐵 = ( coeff ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) |
4 |
|
eqid |
⊢ ( deg ‘ 𝐺 ) = ( deg ‘ 𝐺 ) |
5 |
1 2 3 4
|
coemullem |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( ( coeff ‘ ( 𝐹 ∘f · 𝐺 ) ) = ( 𝑛 ∈ ℕ0 ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) ) ∧ ( deg ‘ ( 𝐹 ∘f · 𝐺 ) ) ≤ ( ( deg ‘ 𝐹 ) + ( deg ‘ 𝐺 ) ) ) ) |
6 |
5
|
simpld |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( coeff ‘ ( 𝐹 ∘f · 𝐺 ) ) = ( 𝑛 ∈ ℕ0 ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) |
7 |
6
|
fveq1d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) → ( ( coeff ‘ ( 𝐹 ∘f · 𝐺 ) ) ‘ 𝑁 ) = ( ( 𝑛 ∈ ℕ0 ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) ) ‘ 𝑁 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) ) |
9 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) = ( 𝐵 ‘ ( 𝑁 − 𝑘 ) ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑁 − 𝑘 ) ) ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑁 − 𝑘 ) ) ) ) |
12 |
8 11
|
sumeq12dv |
⊢ ( 𝑛 = 𝑁 → Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑁 − 𝑘 ) ) ) ) |
13 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) ) |
14 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑁 − 𝑘 ) ) ) ∈ V |
15 |
12 13 14
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) ) ‘ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑁 − 𝑘 ) ) ) ) |
16 |
7 15
|
sylan9eq |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( ( coeff ‘ ( 𝐹 ∘f · 𝐺 ) ) ‘ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑁 − 𝑘 ) ) ) ) |
17 |
16
|
3impa |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐺 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( coeff ‘ ( 𝐹 ∘f · 𝐺 ) ) ‘ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑁 − 𝑘 ) ) ) ) |