| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coefv0.1 | ⊢ 𝐴  =  ( coeff ‘ 𝐹 ) | 
						
							| 2 |  | coeadd.2 | ⊢ 𝐵  =  ( coeff ‘ 𝐺 ) | 
						
							| 3 |  | coeadd.3 | ⊢ 𝑀  =  ( deg ‘ 𝐹 ) | 
						
							| 4 |  | coeadd.4 | ⊢ 𝑁  =  ( deg ‘ 𝐺 ) | 
						
							| 5 |  | plymulcl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 6 |  | dgrcl | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 7 | 3 6 | eqeltrid | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 8 |  | dgrcl | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ 𝐺 )  ∈  ℕ0 ) | 
						
							| 9 | 4 8 | eqeltrid | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 10 |  | nn0addcl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  +  𝑁 )  ∈  ℕ0 ) | 
						
							| 11 | 7 9 10 | syl2an | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝑀  +  𝑁 )  ∈  ℕ0 ) | 
						
							| 12 |  | fzfid | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 0 ... 𝑛 )  ∈  Fin ) | 
						
							| 13 | 1 | coef3 | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 16 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑛 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 17 |  | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 18 | 15 16 17 | syl2an | ⊢ ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 19 | 2 | coef3 | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 21 | 20 | ad2antrr | ⊢ ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 22 |  | fznn0sub | ⊢ ( 𝑘  ∈  ( 0 ... 𝑛 )  →  ( 𝑛  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑛  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 24 | 21 23 | ffvelcdmd | ⊢ ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ∈  ℂ ) | 
						
							| 25 | 18 24 | mulcld | ⊢ ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ∈  ℂ ) | 
						
							| 26 | 12 25 | fsumcl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  𝑛  ∈  ℕ0 )  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ∈  ℂ ) | 
						
							| 27 | 26 | fmpttd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) : ℕ0 ⟶ ℂ ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝑗 ) ) | 
						
							| 29 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  =  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝑛  =  𝑗  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) ) ) | 
						
							| 32 | 28 31 | sumeq12dv | ⊢ ( 𝑛  =  𝑗  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑗 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) ) ) | 
						
							| 33 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) | 
						
							| 34 |  | sumex | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑗 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  ∈  V | 
						
							| 35 | 32 33 34 | fvmpt | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  =  Σ 𝑘  ∈  ( 0 ... 𝑗 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) ) ) | 
						
							| 36 | 35 | ad2antrl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  =  Σ 𝑘  ∈  ( 0 ... 𝑗 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) ) ) | 
						
							| 37 |  | simp2r | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 38 |  | simp2l | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 39 | 38 | nn0red | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 40 |  | simp3l | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  𝑘  ∈  ( 0 ... 𝑗 ) ) | 
						
							| 41 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑗 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 42 | 40 41 | syl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 43 | 42 | nn0red | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 44 | 9 | adantl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 45 | 44 | 3ad2ant1 | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 46 | 45 | nn0red | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 47 | 39 43 46 | lesubadd2d | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( ( 𝑗  −  𝑘 )  ≤  𝑁  ↔  𝑗  ≤  ( 𝑘  +  𝑁 ) ) ) | 
						
							| 48 | 7 | adantr | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 49 | 48 | 3ad2ant1 | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 50 | 49 | nn0red | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 51 |  | simp3r | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  𝑘  ≤  𝑀 ) | 
						
							| 52 | 43 50 46 51 | leadd1dd | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( 𝑘  +  𝑁 )  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 53 | 43 46 | readdcld | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( 𝑘  +  𝑁 )  ∈  ℝ ) | 
						
							| 54 | 50 46 | readdcld | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( 𝑀  +  𝑁 )  ∈  ℝ ) | 
						
							| 55 |  | letr | ⊢ ( ( 𝑗  ∈  ℝ  ∧  ( 𝑘  +  𝑁 )  ∈  ℝ  ∧  ( 𝑀  +  𝑁 )  ∈  ℝ )  →  ( ( 𝑗  ≤  ( 𝑘  +  𝑁 )  ∧  ( 𝑘  +  𝑁 )  ≤  ( 𝑀  +  𝑁 ) )  →  𝑗  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 56 | 39 53 54 55 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( ( 𝑗  ≤  ( 𝑘  +  𝑁 )  ∧  ( 𝑘  +  𝑁 )  ≤  ( 𝑀  +  𝑁 ) )  →  𝑗  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 57 | 52 56 | mpan2d | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( 𝑗  ≤  ( 𝑘  +  𝑁 )  →  𝑗  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 58 | 47 57 | sylbid | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( ( 𝑗  −  𝑘 )  ≤  𝑁  →  𝑗  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 59 | 37 58 | mtod | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ¬  ( 𝑗  −  𝑘 )  ≤  𝑁 ) | 
						
							| 60 |  | simpr | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 61 | 60 | 3ad2ant1 | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 62 |  | fznn0sub | ⊢ ( 𝑘  ∈  ( 0 ... 𝑗 )  →  ( 𝑗  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 63 | 40 62 | syl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( 𝑗  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 64 | 2 4 | dgrub | ⊢ ( ( 𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑗  −  𝑘 )  ∈  ℕ0  ∧  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) )  ≠  0 )  →  ( 𝑗  −  𝑘 )  ≤  𝑁 ) | 
						
							| 65 | 64 | 3expia | ⊢ ( ( 𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑗  −  𝑘 )  ∈  ℕ0 )  →  ( ( 𝐵 ‘ ( 𝑗  −  𝑘 ) )  ≠  0  →  ( 𝑗  −  𝑘 )  ≤  𝑁 ) ) | 
						
							| 66 | 61 63 65 | syl2anc | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( ( 𝐵 ‘ ( 𝑗  −  𝑘 ) )  ≠  0  →  ( 𝑗  −  𝑘 )  ≤  𝑁 ) ) | 
						
							| 67 | 66 | necon1bd | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( ¬  ( 𝑗  −  𝑘 )  ≤  𝑁  →  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) )  =  0 ) ) | 
						
							| 68 | 59 67 | mpd | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) )  =  0 ) | 
						
							| 69 | 68 | oveq2d | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  =  ( ( 𝐴 ‘ 𝑘 )  ·  0 ) ) | 
						
							| 70 | 14 | 3ad2ant1 | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 71 | 70 42 | ffvelcdmd | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 72 | 71 | mul01d | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  0 )  =  0 ) | 
						
							| 73 | 69 72 | eqtrd | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) )  ∧  ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  =  0 ) | 
						
							| 74 | 73 | 3expia | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝑘  ∈  ( 0 ... 𝑗 )  ∧  𝑘  ≤  𝑀 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  =  0 ) ) | 
						
							| 75 | 74 | impl | ⊢ ( ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑗 ) )  ∧  𝑘  ≤  𝑀 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  =  0 ) | 
						
							| 76 |  | simpl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 78 | 1 3 | dgrub | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑘  ∈  ℕ0  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  𝑘  ≤  𝑀 ) | 
						
							| 79 | 78 | 3expia | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑀 ) ) | 
						
							| 80 | 77 41 79 | syl2an | ⊢ ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑗 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑀 ) ) | 
						
							| 81 | 80 | necon1bd | ⊢ ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑗 ) )  →  ( ¬  𝑘  ≤  𝑀  →  ( 𝐴 ‘ 𝑘 )  =  0 ) ) | 
						
							| 82 | 81 | imp | ⊢ ( ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑗 ) )  ∧  ¬  𝑘  ≤  𝑀 )  →  ( 𝐴 ‘ 𝑘 )  =  0 ) | 
						
							| 83 | 82 | oveq1d | ⊢ ( ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑗 ) )  ∧  ¬  𝑘  ≤  𝑀 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  =  ( 0  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) ) ) | 
						
							| 84 | 20 | ad3antrrr | ⊢ ( ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑗 ) )  ∧  ¬  𝑘  ≤  𝑀 )  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 85 | 62 | ad2antlr | ⊢ ( ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑗 ) )  ∧  ¬  𝑘  ≤  𝑀 )  →  ( 𝑗  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 86 | 84 85 | ffvelcdmd | ⊢ ( ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑗 ) )  ∧  ¬  𝑘  ≤  𝑀 )  →  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) )  ∈  ℂ ) | 
						
							| 87 | 86 | mul02d | ⊢ ( ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑗 ) )  ∧  ¬  𝑘  ≤  𝑀 )  →  ( 0  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  =  0 ) | 
						
							| 88 | 83 87 | eqtrd | ⊢ ( ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑗 ) )  ∧  ¬  𝑘  ≤  𝑀 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  =  0 ) | 
						
							| 89 | 75 88 | pm2.61dan | ⊢ ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑗 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  =  0 ) | 
						
							| 90 | 89 | sumeq2dv | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  →  Σ 𝑘  ∈  ( 0 ... 𝑗 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑗 ) 0 ) | 
						
							| 91 |  | fzfi | ⊢ ( 0 ... 𝑗 )  ∈  Fin | 
						
							| 92 | 91 | olci | ⊢ ( ( 0 ... 𝑗 )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( 0 ... 𝑗 )  ∈  Fin ) | 
						
							| 93 |  | sumz | ⊢ ( ( ( 0 ... 𝑗 )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( 0 ... 𝑗 )  ∈  Fin )  →  Σ 𝑘  ∈  ( 0 ... 𝑗 ) 0  =  0 ) | 
						
							| 94 | 92 93 | ax-mp | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑗 ) 0  =  0 | 
						
							| 95 | 90 94 | eqtrdi | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  →  Σ 𝑘  ∈  ( 0 ... 𝑗 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  =  0 ) | 
						
							| 96 | 36 95 | eqtrd | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  ≤  ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  =  0 ) | 
						
							| 97 | 96 | expr | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  𝑗  ∈  ℕ0 )  →  ( ¬  𝑗  ≤  ( 𝑀  +  𝑁 )  →  ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  =  0 ) ) | 
						
							| 98 | 97 | necon1ad | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  𝑗  ∈  ℕ0 )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  ≠  0  →  𝑗  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 99 | 98 | ralrimiva | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ∀ 𝑗  ∈  ℕ0 ( ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  ≠  0  →  𝑗  ≤  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 100 |  | plyco0 | ⊢ ( ( ( 𝑀  +  𝑁 )  ∈  ℕ0  ∧  ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) : ℕ0 ⟶ ℂ )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) )  “  ( ℤ≥ ‘ ( ( 𝑀  +  𝑁 )  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑗  ∈  ℕ0 ( ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  ≠  0  →  𝑗  ≤  ( 𝑀  +  𝑁 ) ) ) ) | 
						
							| 101 | 11 27 100 | syl2anc | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) )  “  ( ℤ≥ ‘ ( ( 𝑀  +  𝑁 )  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑗  ∈  ℕ0 ( ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  ≠  0  →  𝑗  ≤  ( 𝑀  +  𝑁 ) ) ) ) | 
						
							| 102 | 99 101 | mpbird | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) )  “  ( ℤ≥ ‘ ( ( 𝑀  +  𝑁 )  +  1 ) ) )  =  { 0 } ) | 
						
							| 103 | 1 3 | dgrub2 | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  { 0 } ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  { 0 } ) | 
						
							| 105 | 2 4 | dgrub2 | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 106 | 105 | adantl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 107 | 1 3 | coeid | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 109 | 2 4 | coeid | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 111 | 76 60 48 44 14 20 104 106 108 110 | plymullem1 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐹  ∘f   ·  𝐺 )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( Σ 𝑘  ∈  ( 0 ... 𝑗 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑗 ) ) ) ) | 
						
							| 112 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑀  +  𝑁 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 113 | 112 35 | syl | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑀  +  𝑁 ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  =  Σ 𝑘  ∈  ( 0 ... 𝑗 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) ) ) | 
						
							| 114 | 113 | oveq1d | ⊢ ( 𝑗  ∈  ( 0 ... ( 𝑀  +  𝑁 ) )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  ·  ( 𝑧 ↑ 𝑗 ) )  =  ( Σ 𝑘  ∈  ( 0 ... 𝑗 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑗 ) ) ) | 
						
							| 115 | 114 | sumeq2i | ⊢ Σ 𝑗  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  ·  ( 𝑧 ↑ 𝑗 ) )  =  Σ 𝑗  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( Σ 𝑘  ∈  ( 0 ... 𝑗 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑗 ) ) | 
						
							| 116 | 115 | mpteq2i | ⊢ ( 𝑧  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  ·  ( 𝑧 ↑ 𝑗 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( Σ 𝑘  ∈  ( 0 ... 𝑗 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑗  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑗 ) ) ) | 
						
							| 117 | 111 116 | eqtr4di | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐹  ∘f   ·  𝐺 )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  ·  ( 𝑧 ↑ 𝑗 ) ) ) ) | 
						
							| 118 | 5 11 27 102 117 | coeeq | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( coeff ‘ ( 𝐹  ∘f   ·  𝐺 ) )  =  ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ) | 
						
							| 119 |  | ffvelcdm | ⊢ ( ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) : ℕ0 ⟶ ℂ  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 120 | 27 112 119 | syl2an | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  𝑗  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 121 | 5 11 120 117 | dgrle | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( deg ‘ ( 𝐹  ∘f   ·  𝐺 ) )  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 122 | 118 121 | jca | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( ( coeff ‘ ( 𝐹  ∘f   ·  𝐺 ) )  =  ( 𝑛  ∈  ℕ0  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) )  ∧  ( deg ‘ ( 𝐹  ∘f   ·  𝐺 ) )  ≤  ( 𝑀  +  𝑁 ) ) ) |