Description: Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coep.1 | ⊢ 𝐴 ∈ V | |
| coep.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | coepr | ⊢ ( 𝐴 ( 𝑅 ∘ ◡ E ) 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 𝑅 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coep.1 | ⊢ 𝐴 ∈ V | |
| 2 | coep.2 | ⊢ 𝐵 ∈ V | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | 1 3 | brcnv | ⊢ ( 𝐴 ◡ E 𝑥 ↔ 𝑥 E 𝐴 ) |
| 5 | 1 | epeli | ⊢ ( 𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴 ) |
| 6 | 4 5 | bitri | ⊢ ( 𝐴 ◡ E 𝑥 ↔ 𝑥 ∈ 𝐴 ) |
| 7 | 6 | anbi1i | ⊢ ( ( 𝐴 ◡ E 𝑥 ∧ 𝑥 𝑅 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐵 ) ) |
| 8 | 7 | exbii | ⊢ ( ∃ 𝑥 ( 𝐴 ◡ E 𝑥 ∧ 𝑥 𝑅 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐵 ) ) |
| 9 | 1 2 | brco | ⊢ ( 𝐴 ( 𝑅 ∘ ◡ E ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 ◡ E 𝑥 ∧ 𝑥 𝑅 𝐵 ) ) |
| 10 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 𝑅 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐵 ) ) | |
| 11 | 8 9 10 | 3bitr4i | ⊢ ( 𝐴 ( 𝑅 ∘ ◡ E ) 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 𝑅 𝐵 ) |