| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relco | ⊢ Rel  ( 𝐴  ∘  𝐵 ) | 
						
							| 2 |  | relrn0 | ⊢ ( Rel  ( 𝐴  ∘  𝐵 )  →  ( ( 𝐴  ∘  𝐵 )  =  ∅  ↔  ran  ( 𝐴  ∘  𝐵 )  =  ∅ ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( ( 𝐴  ∘  𝐵 )  =  ∅  ↔  ran  ( 𝐴  ∘  𝐵 )  =  ∅ ) | 
						
							| 4 |  | rnco | ⊢ ran  ( 𝐴  ∘  𝐵 )  =  ran  ( 𝐴  ↾  ran  𝐵 ) | 
						
							| 5 | 4 | eqeq1i | ⊢ ( ran  ( 𝐴  ∘  𝐵 )  =  ∅  ↔  ran  ( 𝐴  ↾  ran  𝐵 )  =  ∅ ) | 
						
							| 6 |  | relres | ⊢ Rel  ( 𝐴  ↾  ran  𝐵 ) | 
						
							| 7 |  | reldm0 | ⊢ ( Rel  ( 𝐴  ↾  ran  𝐵 )  →  ( ( 𝐴  ↾  ran  𝐵 )  =  ∅  ↔  dom  ( 𝐴  ↾  ran  𝐵 )  =  ∅ ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ( ( 𝐴  ↾  ran  𝐵 )  =  ∅  ↔  dom  ( 𝐴  ↾  ran  𝐵 )  =  ∅ ) | 
						
							| 9 |  | relrn0 | ⊢ ( Rel  ( 𝐴  ↾  ran  𝐵 )  →  ( ( 𝐴  ↾  ran  𝐵 )  =  ∅  ↔  ran  ( 𝐴  ↾  ran  𝐵 )  =  ∅ ) ) | 
						
							| 10 | 6 9 | ax-mp | ⊢ ( ( 𝐴  ↾  ran  𝐵 )  =  ∅  ↔  ran  ( 𝐴  ↾  ran  𝐵 )  =  ∅ ) | 
						
							| 11 |  | dmres | ⊢ dom  ( 𝐴  ↾  ran  𝐵 )  =  ( ran  𝐵  ∩  dom  𝐴 ) | 
						
							| 12 |  | incom | ⊢ ( ran  𝐵  ∩  dom  𝐴 )  =  ( dom  𝐴  ∩  ran  𝐵 ) | 
						
							| 13 | 11 12 | eqtri | ⊢ dom  ( 𝐴  ↾  ran  𝐵 )  =  ( dom  𝐴  ∩  ran  𝐵 ) | 
						
							| 14 | 13 | eqeq1i | ⊢ ( dom  ( 𝐴  ↾  ran  𝐵 )  =  ∅  ↔  ( dom  𝐴  ∩  ran  𝐵 )  =  ∅ ) | 
						
							| 15 | 8 10 14 | 3bitr3i | ⊢ ( ran  ( 𝐴  ↾  ran  𝐵 )  =  ∅  ↔  ( dom  𝐴  ∩  ran  𝐵 )  =  ∅ ) | 
						
							| 16 | 3 5 15 | 3bitri | ⊢ ( ( 𝐴  ∘  𝐵 )  =  ∅  ↔  ( dom  𝐴  ∩  ran  𝐵 )  =  ∅ ) |