Step |
Hyp |
Ref |
Expression |
1 |
|
relco |
⊢ Rel ( 𝐴 ∘ 𝐵 ) |
2 |
|
relrn0 |
⊢ ( Rel ( 𝐴 ∘ 𝐵 ) → ( ( 𝐴 ∘ 𝐵 ) = ∅ ↔ ran ( 𝐴 ∘ 𝐵 ) = ∅ ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ( 𝐴 ∘ 𝐵 ) = ∅ ↔ ran ( 𝐴 ∘ 𝐵 ) = ∅ ) |
4 |
|
rnco |
⊢ ran ( 𝐴 ∘ 𝐵 ) = ran ( 𝐴 ↾ ran 𝐵 ) |
5 |
4
|
eqeq1i |
⊢ ( ran ( 𝐴 ∘ 𝐵 ) = ∅ ↔ ran ( 𝐴 ↾ ran 𝐵 ) = ∅ ) |
6 |
|
relres |
⊢ Rel ( 𝐴 ↾ ran 𝐵 ) |
7 |
|
reldm0 |
⊢ ( Rel ( 𝐴 ↾ ran 𝐵 ) → ( ( 𝐴 ↾ ran 𝐵 ) = ∅ ↔ dom ( 𝐴 ↾ ran 𝐵 ) = ∅ ) ) |
8 |
6 7
|
ax-mp |
⊢ ( ( 𝐴 ↾ ran 𝐵 ) = ∅ ↔ dom ( 𝐴 ↾ ran 𝐵 ) = ∅ ) |
9 |
|
relrn0 |
⊢ ( Rel ( 𝐴 ↾ ran 𝐵 ) → ( ( 𝐴 ↾ ran 𝐵 ) = ∅ ↔ ran ( 𝐴 ↾ ran 𝐵 ) = ∅ ) ) |
10 |
6 9
|
ax-mp |
⊢ ( ( 𝐴 ↾ ran 𝐵 ) = ∅ ↔ ran ( 𝐴 ↾ ran 𝐵 ) = ∅ ) |
11 |
|
dmres |
⊢ dom ( 𝐴 ↾ ran 𝐵 ) = ( ran 𝐵 ∩ dom 𝐴 ) |
12 |
|
incom |
⊢ ( ran 𝐵 ∩ dom 𝐴 ) = ( dom 𝐴 ∩ ran 𝐵 ) |
13 |
11 12
|
eqtri |
⊢ dom ( 𝐴 ↾ ran 𝐵 ) = ( dom 𝐴 ∩ ran 𝐵 ) |
14 |
13
|
eqeq1i |
⊢ ( dom ( 𝐴 ↾ ran 𝐵 ) = ∅ ↔ ( dom 𝐴 ∩ ran 𝐵 ) = ∅ ) |
15 |
8 10 14
|
3bitr3i |
⊢ ( ran ( 𝐴 ↾ ran 𝐵 ) = ∅ ↔ ( dom 𝐴 ∩ ran 𝐵 ) = ∅ ) |
16 |
3 5 15
|
3bitri |
⊢ ( ( 𝐴 ∘ 𝐵 ) = ∅ ↔ ( dom 𝐴 ∩ ran 𝐵 ) = ∅ ) |