Metamath Proof Explorer


Theorem coeq2

Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997)

Ref Expression
Assertion coeq2 ( 𝐴 = 𝐵 → ( 𝐶𝐴 ) = ( 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 coss2 ( 𝐴𝐵 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )
2 coss2 ( 𝐵𝐴 → ( 𝐶𝐵 ) ⊆ ( 𝐶𝐴 ) )
3 1 2 anim12i ( ( 𝐴𝐵𝐵𝐴 ) → ( ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) ∧ ( 𝐶𝐵 ) ⊆ ( 𝐶𝐴 ) ) )
4 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
5 eqss ( ( 𝐶𝐴 ) = ( 𝐶𝐵 ) ↔ ( ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) ∧ ( 𝐶𝐵 ) ⊆ ( 𝐶𝐴 ) ) )
6 3 4 5 3imtr4i ( 𝐴 = 𝐵 → ( 𝐶𝐴 ) = ( 𝐶𝐵 ) )