Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | coeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 ∘ 𝐴 ) = ( 𝐶 ∘ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∘ 𝐴 ) ⊆ ( 𝐶 ∘ 𝐵 ) ) | |
2 | coss2 | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐶 ∘ 𝐵 ) ⊆ ( 𝐶 ∘ 𝐴 ) ) | |
3 | 1 2 | anim12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝐶 ∘ 𝐴 ) ⊆ ( 𝐶 ∘ 𝐵 ) ∧ ( 𝐶 ∘ 𝐵 ) ⊆ ( 𝐶 ∘ 𝐴 ) ) ) |
4 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
5 | eqss | ⊢ ( ( 𝐶 ∘ 𝐴 ) = ( 𝐶 ∘ 𝐵 ) ↔ ( ( 𝐶 ∘ 𝐴 ) ⊆ ( 𝐶 ∘ 𝐵 ) ∧ ( 𝐶 ∘ 𝐵 ) ⊆ ( 𝐶 ∘ 𝐴 ) ) ) | |
6 | 3 4 5 | 3imtr4i | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 ∘ 𝐴 ) = ( 𝐶 ∘ 𝐵 ) ) |