| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coesub.1 | ⊢ 𝐴  =  ( coeff ‘ 𝐹 ) | 
						
							| 2 |  | coesub.2 | ⊢ 𝐵  =  ( coeff ‘ 𝐺 ) | 
						
							| 3 |  | plyssc | ⊢ ( Poly ‘ 𝑆 )  ⊆  ( Poly ‘ ℂ ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 5 | 3 4 | sselid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 6 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 7 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 8 |  | plyconst | ⊢ ( ( ℂ  ⊆  ℂ  ∧  - 1  ∈  ℂ )  →  ( ℂ  ×  { - 1 } )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( ℂ  ×  { - 1 } )  ∈  ( Poly ‘ ℂ ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 11 | 3 10 | sselid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐺  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 12 |  | plymulcl | ⊢ ( ( ( ℂ  ×  { - 1 } )  ∈  ( Poly ‘ ℂ )  ∧  𝐺  ∈  ( Poly ‘ ℂ ) )  →  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 13 | 9 11 12 | sylancr | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 14 |  | eqid | ⊢ ( coeff ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( coeff ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) | 
						
							| 15 | 1 14 | coeadd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℂ )  ∧  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 )  ∈  ( Poly ‘ ℂ ) )  →  ( coeff ‘ ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) )  =  ( 𝐴  ∘f   +  ( coeff ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) ) ) | 
						
							| 16 | 5 13 15 | syl2anc | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( coeff ‘ ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) )  =  ( 𝐴  ∘f   +  ( coeff ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) ) ) | 
						
							| 17 |  | coemulc | ⊢ ( ( - 1  ∈  ℂ  ∧  𝐺  ∈  ( Poly ‘ ℂ ) )  →  ( coeff ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( ( ℕ0  ×  { - 1 } )  ∘f   ·  ( coeff ‘ 𝐺 ) ) ) | 
						
							| 18 | 7 11 17 | sylancr | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( coeff ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( ( ℕ0  ×  { - 1 } )  ∘f   ·  ( coeff ‘ 𝐺 ) ) ) | 
						
							| 19 | 2 | oveq2i | ⊢ ( ( ℕ0  ×  { - 1 } )  ∘f   ·  𝐵 )  =  ( ( ℕ0  ×  { - 1 } )  ∘f   ·  ( coeff ‘ 𝐺 ) ) | 
						
							| 20 | 18 19 | eqtr4di | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( coeff ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( ( ℕ0  ×  { - 1 } )  ∘f   ·  𝐵 ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐴  ∘f   +  ( coeff ‘ ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) )  =  ( 𝐴  ∘f   +  ( ( ℕ0  ×  { - 1 } )  ∘f   ·  𝐵 ) ) ) | 
						
							| 22 | 16 21 | eqtrd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( coeff ‘ ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) )  =  ( 𝐴  ∘f   +  ( ( ℕ0  ×  { - 1 } )  ∘f   ·  𝐵 ) ) ) | 
						
							| 23 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 24 |  | plyf | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 25 |  | plyf | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 26 |  | ofnegsub | ⊢ ( ( ℂ  ∈  V  ∧  𝐹 : ℂ ⟶ ℂ  ∧  𝐺 : ℂ ⟶ ℂ )  →  ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( 𝐹  ∘f   −  𝐺 ) ) | 
						
							| 27 | 23 24 25 26 | mp3an3an | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( 𝐹  ∘f   −  𝐺 ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( coeff ‘ ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) ) )  =  ( coeff ‘ ( 𝐹  ∘f   −  𝐺 ) ) ) | 
						
							| 29 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 30 | 1 | coef3 | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 31 | 2 | coef3 | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 32 |  | ofnegsub | ⊢ ( ( ℕ0  ∈  V  ∧  𝐴 : ℕ0 ⟶ ℂ  ∧  𝐵 : ℕ0 ⟶ ℂ )  →  ( 𝐴  ∘f   +  ( ( ℕ0  ×  { - 1 } )  ∘f   ·  𝐵 ) )  =  ( 𝐴  ∘f   −  𝐵 ) ) | 
						
							| 33 | 29 30 31 32 | mp3an3an | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐴  ∘f   +  ( ( ℕ0  ×  { - 1 } )  ∘f   ·  𝐵 ) )  =  ( 𝐴  ∘f   −  𝐵 ) ) | 
						
							| 34 | 22 28 33 | 3eqtr3d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( coeff ‘ ( 𝐹  ∘f   −  𝐺 ) )  =  ( 𝐴  ∘f   −  𝐵 ) ) |