Step |
Hyp |
Ref |
Expression |
1 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
2 |
1
|
sseli |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
3 |
|
eqeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↔ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
4 |
3
|
anbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ↔ ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
5 |
4
|
rexbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
6 |
5
|
riotabidv |
⊢ ( 𝑓 = 𝐹 → ( ℩ 𝑎 ∈ ( ℂ ↑m ℕ0 ) ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) = ( ℩ 𝑎 ∈ ( ℂ ↑m ℕ0 ) ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
7 |
|
df-coe |
⊢ coeff = ( 𝑓 ∈ ( Poly ‘ ℂ ) ↦ ( ℩ 𝑎 ∈ ( ℂ ↑m ℕ0 ) ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
8 |
|
riotaex |
⊢ ( ℩ 𝑎 ∈ ( ℂ ↑m ℕ0 ) ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ∈ V |
9 |
6 7 8
|
fvmpt |
⊢ ( 𝐹 ∈ ( Poly ‘ ℂ ) → ( coeff ‘ 𝐹 ) = ( ℩ 𝑎 ∈ ( ℂ ↑m ℕ0 ) ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
10 |
2 9
|
syl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( coeff ‘ 𝐹 ) = ( ℩ 𝑎 ∈ ( ℂ ↑m ℕ0 ) ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |