Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | coexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∘ 𝐵 ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossxp | ⊢ ( 𝐴 ∘ 𝐵 ) ⊆ ( dom 𝐵 × ran 𝐴 ) | |
2 | dmexg | ⊢ ( 𝐵 ∈ 𝑊 → dom 𝐵 ∈ V ) | |
3 | rnexg | ⊢ ( 𝐴 ∈ 𝑉 → ran 𝐴 ∈ V ) | |
4 | xpexg | ⊢ ( ( dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V ) → ( dom 𝐵 × ran 𝐴 ) ∈ V ) | |
5 | 2 3 4 | syl2anr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( dom 𝐵 × ran 𝐴 ) ∈ V ) |
6 | ssexg | ⊢ ( ( ( 𝐴 ∘ 𝐵 ) ⊆ ( dom 𝐵 × ran 𝐴 ) ∧ ( dom 𝐵 × ran 𝐴 ) ∈ V ) → ( 𝐴 ∘ 𝐵 ) ∈ V ) | |
7 | 1 5 6 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∘ 𝐵 ) ∈ V ) |