Metamath Proof Explorer


Theorem coexg

Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998)

Ref Expression
Assertion coexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 cossxp ( 𝐴𝐵 ) ⊆ ( dom 𝐵 × ran 𝐴 )
2 dmexg ( 𝐵𝑊 → dom 𝐵 ∈ V )
3 rnexg ( 𝐴𝑉 → ran 𝐴 ∈ V )
4 xpexg ( ( dom 𝐵 ∈ V ∧ ran 𝐴 ∈ V ) → ( dom 𝐵 × ran 𝐴 ) ∈ V )
5 2 3 4 syl2anr ( ( 𝐴𝑉𝐵𝑊 ) → ( dom 𝐵 × ran 𝐴 ) ∈ V )
6 ssexg ( ( ( 𝐴𝐵 ) ⊆ ( dom 𝐵 × ran 𝐴 ) ∧ ( dom 𝐵 × ran 𝐴 ) ∈ V ) → ( 𝐴𝐵 ) ∈ V )
7 1 5 6 sylancr ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )