| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp11 |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ) ) → 𝐴 <<s 𝐵 ) |
| 2 |
|
simp2 |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ) |
| 3 |
|
simp12 |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ) ) → 𝐶 ∈ 𝒫 No ) |
| 4 |
|
simp3l |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ) ) → ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ) |
| 5 |
|
scutcut |
⊢ ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
| 6 |
1 5
|
syl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ) ) → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
| 7 |
6
|
simp2d |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ) ) → 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) |
| 8 |
|
cofsslt |
⊢ ( ( 𝐶 ∈ 𝒫 No ∧ ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) → 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ) |
| 9 |
3 4 7 8
|
syl3anc |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ) ) → 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ) |
| 10 |
|
simp13 |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ) ) → 𝐷 ∈ 𝒫 No ) |
| 11 |
|
simp3r |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ) ) → ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ) |
| 12 |
6
|
simp3d |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ) ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) |
| 13 |
|
coinitsslt |
⊢ ( ( 𝐷 ∈ 𝒫 No ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) |
| 14 |
10 11 12 13
|
syl3anc |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ) ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) |
| 15 |
|
cofcut1 |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ( 𝐴 |s 𝐵 ) = ( 𝐶 |s 𝐷 ) ) |
| 16 |
1 2 9 14 15
|
syl112anc |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡 ∈ 𝐶 ∃ 𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ 𝐵 𝑠 ≤s 𝑟 ) ) → ( 𝐴 |s 𝐵 ) = ( 𝐶 |s 𝐷 ) ) |