Metamath Proof Explorer


Theorem cofcut2d

Description: If A and C are mutually cofinal and B and D are mutually coinitial, then the cut of A and B is equal to the cut of C and D . Theorem 2.7 of Gonshor p. 10. (Contributed by Scott Fenton, 23-Jan-2025)

Ref Expression
Hypotheses cofcut2d.1 âŠĒ ( 𝜑 → ðī <<s ðĩ )
cofcut2d.2 âŠĒ ( 𝜑 → ðķ ∈ ð’Ŧ No )
cofcut2d.3 âŠĒ ( 𝜑 → 𝐷 ∈ ð’Ŧ No )
cofcut2d.4 âŠĒ ( 𝜑 → ∀ ð‘Ĩ ∈ ðī ∃ ð‘Ķ ∈ ðķ ð‘Ĩ â‰Īs ð‘Ķ )
cofcut2d.5 âŠĒ ( 𝜑 → ∀ 𝑧 ∈ ðĩ ∃ ð‘Ī ∈ 𝐷 ð‘Ī â‰Īs 𝑧 )
cofcut2d.6 âŠĒ ( 𝜑 → ∀ ð‘Ą ∈ ðķ ∃ ð‘Ē ∈ ðī ð‘Ą â‰Īs ð‘Ē )
cofcut2d.7 âŠĒ ( 𝜑 → ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ ðĩ 𝑠 â‰Īs 𝑟 )
Assertion cofcut2d ( 𝜑 → ( ðī |s ðĩ ) = ( ðķ |s 𝐷 ) )

Proof

Step Hyp Ref Expression
1 cofcut2d.1 âŠĒ ( 𝜑 → ðī <<s ðĩ )
2 cofcut2d.2 âŠĒ ( 𝜑 → ðķ ∈ ð’Ŧ No )
3 cofcut2d.3 âŠĒ ( 𝜑 → 𝐷 ∈ ð’Ŧ No )
4 cofcut2d.4 âŠĒ ( 𝜑 → ∀ ð‘Ĩ ∈ ðī ∃ ð‘Ķ ∈ ðķ ð‘Ĩ â‰Īs ð‘Ķ )
5 cofcut2d.5 âŠĒ ( 𝜑 → ∀ 𝑧 ∈ ðĩ ∃ ð‘Ī ∈ 𝐷 ð‘Ī â‰Īs 𝑧 )
6 cofcut2d.6 âŠĒ ( 𝜑 → ∀ ð‘Ą ∈ ðķ ∃ ð‘Ē ∈ ðī ð‘Ą â‰Īs ð‘Ē )
7 cofcut2d.7 âŠĒ ( 𝜑 → ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ ðĩ 𝑠 â‰Īs 𝑟 )
8 cofcut2 âŠĒ ( ( ( ðī <<s ðĩ ∧ ðķ ∈ ð’Ŧ No ∧ 𝐷 ∈ ð’Ŧ No ) ∧ ( ∀ ð‘Ĩ ∈ ðī ∃ ð‘Ķ ∈ ðķ ð‘Ĩ â‰Īs ð‘Ķ ∧ ∀ 𝑧 ∈ ðĩ ∃ ð‘Ī ∈ 𝐷 ð‘Ī â‰Īs 𝑧 ) ∧ ( ∀ ð‘Ą ∈ ðķ ∃ ð‘Ē ∈ ðī ð‘Ą â‰Īs ð‘Ē ∧ ∀ 𝑟 ∈ 𝐷 ∃ 𝑠 ∈ ðĩ 𝑠 â‰Īs 𝑟 ) ) → ( ðī |s ðĩ ) = ( ðķ |s 𝐷 ) )
9 1 2 3 4 5 6 7 8 syl322anc âŠĒ ( 𝜑 → ( ðī |s ðĩ ) = ( ðķ |s 𝐷 ) )